González-Pérez Miguel, Camasão Dimitria Bonizol, Mantovani Diego, Alonso Matilde, Rodríguez-Cabello José Carlos
BIOFORGE (Group for Advanced Materials and Nanobiotechnology), University of Valladolid, CIBER-BBN, 47011 Valladolid, Spain.
Laboratory for Biomaterials and Bioengineering, Canada Research Chair I in Biomaterials and Bioengineering for the Innovation in Surgery, Department of Min-Met-Materials Engineering, Research Center of CHU de Québec, Division of Regenerative Medicine, Laval University, Québec, QC, Canada G1V 0A6.
Biomater Sci. 2021 May 18;9(10):3860-3874. doi: 10.1039/d0bm02197k.
The development of techniques for fabricating vascular wall models will foster the development of preventive and therapeutic therapies for treating cardiovascular diseases. However, the physical and biological complexity of vascular tissue represents a major challenge, especially for the design and the production of off-the-shelf biomimetic vascular replicas. Herein, we report the development of a biocasting technique that can be used to replicate the tunica adventitia and the external elastic lamina of the vascular wall. Type I collagen embedded with neonatal human dermal fibroblast (HDFn) and an elastic click cross-linkable, cell-adhesive and protease-sensitive elastin-like recombinamer (ELR) hydrogel were investigated as readily accessible and tunable layers to the envisaged model. Mechanical characterization confirmed that the viscous and elastic attributes predominated in the collagen and ELR layers, respectively. In vitro maturation confirmed that the collagen and ELR provided a favorable environment for the HDFn viability, while histology revealed the wavy and homogenous morphology of the ELR and collagen layer respectively, the cell polarization towards the cell-attachment sites encoded on the ELR, and the enhanced expression of glycosaminoglycan-rich extracellular matrix and differentiation of the embedded HDFn into myofibroblasts. As a complementary assay, 30% by weight of the collagen layer was substituted with the ELR. This model proved the possibility to tune the composition and confirm the versatile character of the technology developed, while revealing no significant differences with respect to the original construct. On-demand modification of the model dimensions, number and composition of the layers, as well as the type and density of the seeded cells, can be further envisioned, thus suggesting that this bi-layered model may be a promising platform for the fabrication of biomimetic vascular wall models.
血管壁模型制造技术的发展将促进心血管疾病预防和治疗方法的发展。然而,血管组织的物理和生物学复杂性是一个重大挑战,特别是对于现成的仿生血管复制品的设计和生产。在此,我们报告了一种生物铸造技术的发展,该技术可用于复制血管壁的外膜和外弹性膜。研究了嵌入新生儿人真皮成纤维细胞(HDFn)的I型胶原蛋白和一种可弹性点击交联、细胞粘附且对蛋白酶敏感的弹性蛋白样重组聚合物(ELR)水凝胶,它们是所设想模型易于获取且可调节的层。力学表征证实,粘性和弹性属性分别在胶原蛋白层和ELR层中占主导地位。体外成熟证实,胶原蛋白和ELR为HDFn的存活提供了有利环境,而组织学分别揭示了ELR层和胶原蛋白层呈波浪状且均匀的形态、细胞向ELR上编码的细胞附着位点极化,以及富含糖胺聚糖的细胞外基质表达增强和嵌入的HDFn分化为肌成纤维细胞。作为补充试验,用ELR替代了30%重量的胶原蛋白层。该模型证明了调节组成的可能性,并证实了所开发技术的通用性,同时与原始构建体相比没有显著差异。可以进一步设想对模型尺寸、层数和组成以及接种细胞的类型和密度进行按需修改,因此表明这种双层模型可能是制造仿生血管壁模型的一个有前途的平台。