Wei Qiuyu, Yao Xiaoqiang, Zhang Qianqian, Yan Pengji, Ru Chenglong, Li Chunfeng, Tao Chunlan, Wang Wei, Han Dongfang, Han Dongxue, Niu Li, Qin Dongdong, Pan Xiaobo
Center for Advanced Analytical Science, College of Chemistry and Chemical Engineering, Guangzhou University, Guangzhou, 510006, P. R. China.
College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070, P. R. China.
Small. 2021 Jun;17(23):e2100132. doi: 10.1002/smll.202100132. Epub 2021 Apr 23.
Poor charge separation is the main factor that limits the photocatalytic hydrogen generation efficiency of organic conjugated polymers. In this work, a series of linear donor-acceptor (D-A) type oligomers are synthesized by a palladium-catalyzed Sonogashira-Hagihara coupling of electron-deficient diborane unit and different dihalide substitution sulfur functionalized monomers. Such diborane-based A unit exerts great impact on the resulting oligomers, including distinct semiconductor characters with isolated lowest unoccupied molecular orbital (LUMO) orbits locating in diborane-containing fragment, and elevated LUMO level higher than water reduction potential. Relative to A-A type counterpart, the enhanced dipole polarization effect in D-A oligomers facilitates separation of photogenerated charge carriers, as evidenced by notably prolonged electron lifetime. Owing to π-π stacking of rigid backbone, the oligomers can aggregate into an interesting 2D semicrystalline nanosheet (≈2.74 nm), which is rarely reported in linear polymeric photocatalysts prepared by similar carbon-carbon coupling reaction. Despite low surface area (30.3 m g ), such ultrathin nanosheet D-A oligomer offers outstanding visible light (λ > 420 nm) hydrogen evolution rate of 833 µmol g h , 14 times greater than its A-A analogue (61 µmol g h ). The study highlights the great potential of using boron element to construct D-A type oligomers for efficient photocatalytic hydrogen generation.
电荷分离效率低下是限制有机共轭聚合物光催化产氢效率的主要因素。在本工作中,通过缺电子二硼烷单元与不同二卤代取代硫官能化单体的钯催化Sonogashira-Hagihara偶联反应,合成了一系列线性供体-受体(D-A)型低聚物。这种基于二硼烷的A单元对所得低聚物产生了很大影响,包括具有位于含二硼烷片段中的孤立最低未占分子轨道(LUMO)轨道的独特半导体特性,以及高于水还原电位的升高的LUMO能级。相对于A-A型对应物,D-A低聚物中增强的偶极极化效应促进了光生电荷载流子的分离,电子寿命显著延长证明了这一点。由于刚性主链的π-π堆积,这些低聚物可以聚集成有趣的二维半结晶纳米片(≈2.74nm),这在通过类似的碳-碳偶联反应制备的线性聚合物光催化剂中很少见报道。尽管表面积较低(30.3 m²/g),这种超薄纳米片D-A低聚物仍具有出色的可见光(λ>420nm)析氢速率,为833µmol g⁻¹ h⁻¹,是其A-A类似物(61µmol g⁻¹ h⁻¹)的14倍。该研究突出了利用硼元素构建D-A型低聚物用于高效光催化产氢的巨大潜力。