Sheffield Institute for Translational Neuroscience, University of Sheffield, Sheffield, UK.
Johns Hopkins University, Department of Neurology, Baltimore, MD, USA.
Neurosci Lett. 2021 Jun 11;755:135911. doi: 10.1016/j.neulet.2021.135911. Epub 2021 Apr 20.
Amongst the most important discoveries in ALS pathobiology are the works demonstrating that multiple cell types contribute to disease onset and progression. However, a significant limitation in ALS research is the inability to obtain tissues from ALS patient brain and spinal cord during the course of the disease. In vivo modeling has provided insights into the role of these cell subtypes in disease onset and progression. However, in vivo models also have shortcomings, including the reliance on a limited number of models based upon hereditary forms of the disease. Therefore, using human induced pluripotent stem cells (iPSC) reprogrammed from somatic cells of ALS patients, with both hereditary and sporadic forms of the disease, and differentiated into cell subtypes of both the central nervous system (CNS) and peripheral nervous system (PNS), have become powerful complementary tools for investigating basic mechanisms of disease as well as a platform for drug discovery. Motor neuron and other neuron subtypes, as well as non-neuronal cells have been differentiated from human iPSC and studied for their potential contributions to ALS pathobiology. As iPSC technologies have advanced, 3D modeling with multicellular systems organised in microfluidic chambers or organoids are the next step in validating the pathways and therapeutic targets already identified. Precision medicine approaches with iPSC using either traditional strategies of screening drugs that target a known pathogenic mechanism as well as "blind-to-target" drug screenings that allow for patient stratification based on drug response rather than clinical characteristics are now being employed.
在肌萎缩侧索硬化症(ALS)的病理生物学中最重要的发现之一是,多项研究表明多种细胞类型对疾病的发生和发展都有贡献。然而,ALS 研究的一个重大局限性是,无法在疾病过程中从 ALS 患者的大脑和脊髓中获取组织。体内建模为这些细胞亚型在疾病发生和发展中的作用提供了深入的了解。然而,体内模型也有其局限性,包括依赖于基于疾病遗传形式的有限数量的模型。因此,使用源自 ALS 患者体细胞的人诱导多能干细胞(iPSC),对遗传性和散发性疾病进行重编程,并分化为中枢神经系统(CNS)和周围神经系统(PNS)的细胞亚型,已成为研究疾病基本机制以及药物发现平台的有力补充工具。已经从人 iPSC 中分化出运动神经元和其他神经元亚型以及非神经元细胞,并研究了它们对 ALS 病理生物学的潜在贡献。随着 iPSC 技术的不断发展,在微流控室或类器官中组织的多细胞系统的 3D 建模是验证已经确定的途径和治疗靶点的下一步。目前正在使用 iPSC 的精准医疗方法,包括使用传统的筛选针对已知致病机制的药物的策略,以及“针对目标的盲目”药物筛选,根据药物反应而不是临床特征对患者进行分层。