Suppr超能文献

基于人诱导多能干细胞的中枢神经系统疾病模型用于药物发现。

Human iPSC-Based Modeling of Central Nerve System Disorders for Drug Discovery.

机构信息

Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

Ronald Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA.

出版信息

Int J Mol Sci. 2021 Jan 26;22(3):1203. doi: 10.3390/ijms22031203.

Abstract

A high-throughput drug screen identifies potentially promising therapeutics for clinical trials. However, limitations that persist in current disease modeling with limited physiological relevancy of human patients skew drug responses, hamper translation of clinical efficacy, and contribute to high clinical attritions. The emergence of induced pluripotent stem cell (iPSC) technology revolutionizes the paradigm of drug discovery. In particular, iPSC-based three-dimensional (3D) tissue engineering that appears as a promising vehicle of in vitro disease modeling provides more sophisticated tissue architectures and micro-environmental cues than a traditional two-dimensional (2D) culture. Here we discuss 3D based organoids/spheroids that construct the advanced modeling with evolved structural complexity, which propels drug discovery by exhibiting more human specific and diverse pathologies that are not perceived in 2D or animal models. We will then focus on various central nerve system (CNS) disease modeling using human iPSCs, leading to uncovering disease pathogenesis that guides the development of therapeutic strategies. Finally, we will address new opportunities of iPSC-assisted drug discovery with multi-disciplinary approaches from bioengineering to Omics technology. Despite technological challenges, iPSC-derived cytoarchitectures through interactions of diverse cell types mimic patients' CNS and serve as a platform for therapeutic development and personalized precision medicine.

摘要

高通量药物筛选可识别出有潜力的临床试验治疗方法。然而,目前的疾病模型存在一些局限性,即与人类患者的生理相关性有限,这导致药物反应发生偏差,阻碍了临床疗效的转化,并导致高临床淘汰率。诱导多能干细胞(iPSC)技术的出现彻底改变了药物发现的模式。特别是基于 iPSC 的三维(3D)组织工程,作为体外疾病建模的一种有前途的手段,提供了比传统二维(2D)培养更复杂的组织结构和微环境线索。在这里,我们讨论了基于 3D 的类器官/球体,它们构建了具有进化结构复杂性的先进模型,通过表现出更多在 2D 或动物模型中无法感知的人类特异性和多样化的病理,推动了药物发现。然后,我们将重点介绍使用人类 iPSC 进行各种中枢神经系统(CNS)疾病建模,以揭示指导治疗策略发展的疾病发病机制。最后,我们将讨论通过从生物工程到组学技术的多学科方法,利用 iPSC 辅助药物发现的新机会。尽管存在技术挑战,但通过多种细胞类型的相互作用产生的 iPSC 衍生细胞结构模拟了患者的中枢神经系统,并为治疗开发和个性化精准医疗提供了平台。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/60fa/7865494/e8f3f9f6c620/ijms-22-01203-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验