Suppr超能文献

质子化环糊精在串联质谱中的碎裂机制。

Fragmentation mechanisms of protonated cyclodextrins in tandem mass spectrometry.

机构信息

Department of Chemistry, Biochemistry and Pharmaceutical Sciences, University of Bern, Freiestrasse 3, CH-3012 Bern, Switzerland.

出版信息

Carbohydr Res. 2021 Jun;504:108316. doi: 10.1016/j.carres.2021.108316. Epub 2021 Apr 20.

Abstract

Tandem mass spectrometry has found widespread application as a powerful tool for the characterization of linear and branched oligosaccharides. Though the technique has been applied to the analysis of cyclic oligosaccharides as well, the underlying fragmentation mechanisms have hardly been investigated. This study focuses on the mechanistic aspects of the gas-phase dissociation of protonated β-cyclodextrins. Elucidation of the dissociation mechanisms is supported by tandem mass spectrometric experiments and by experiments on di- and trimethylated cyclodextrin derivatives. The fragmentation pathway comprises the linearization of the macrocyclic structure as the initial step of the decomposition, followed by the elimination of glucose subunits and the subsequent release of water and formaldehyde moieties from the glucose monomer and dimer fragment ions. Linearization of the macrocycle occurs due to proton-driven scission of the glycosidic bond adjacent to carbon atom C1 in conjunction with the formation of a new hydroxy group. The resulting ring-opened structure further decomposes in charge-independent processes forming either zwitterionic fragments, a 1,4-anhydroglucose moiety, or a new macrocyclic structure, that is lost as a neutral, and an oxonium ion. Since the hydroxy group formed at the ring-opening site can be regarded as the non-reducing end of the linearized structure, the fragment ion nomenclature commonly used for linear and branched oligosaccharides, which relies on the designation of a reducing and a non-reducing end, can also be applied to the description of fragment ions derived from cyclic structures.

摘要

串联质谱已广泛应用于线性和支链寡糖的特征描述,是一种强大的工具。虽然该技术也已应用于环状寡糖的分析,但对其潜在的裂解机制的研究却很少。本研究聚焦于质子化β-环糊精在气相中解离的机理方面。通过串联质谱实验和二甲基、三甲基环糊精衍生物的实验,对解离机制进行了阐明。该裂解途径包括大环结构的线性化,作为分解的初始步骤,随后葡萄糖单元的消除,以及葡萄糖单体和二聚体片段离子中释放水和甲醛部分。大环的线性化是由于质子驱动的糖苷键在与碳原子 C1 相邻的位置的断裂,同时形成新的羟基。由此产生的开环结构进一步在电荷无关的过程中分解,形成两性离子片段、1,4-脱水葡萄糖部分或新的大环结构,作为中性部分和氧鎓离子丢失。由于在开环部位形成的羟基可以被视为线性化结构的非还原端,因此通常用于线性和支链寡糖的片段离子命名法,依赖于还原端和非还原端的指定,也可以应用于描述衍生自环状结构的片段离子。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验