Suppr超能文献

左心室被动充盈的横向各向同性建模:心外膜生物材料制造的力学特性表征。

Transverse isotropic modelling of left-ventricle passive filling: Mechanical characterization for epicardial biomaterial manufacturing.

机构信息

Université de Lorraine, CNRS, IJL, F- 54000 Nancy France.

Université de Lorraine, CNRS, IJL, F- 54000 Nancy France; CHRU de Nancy, Department of Cardio-Vascular Surgery, F- 54000 Nancy France.

出版信息

J Mech Behav Biomed Mater. 2021 Jul;119:104492. doi: 10.1016/j.jmbbm.2021.104492. Epub 2021 Apr 15.

Abstract

Biomaterials applied to the epicardium have been studied intensively in recent years for different therapeutic purposes. Their mechanical influence on the heart, however, has not been clearly identified. Most biomaterials for epicardial applications are manufactured as membranes or cardiac patches that have isotropic geometry, which is not well suited to myocardial wall motion. Myocardial wall motion during systole and diastole produces a complex force in different directions. Membrane or cardiac patches that cannot adapt to these specific directions will exert an inappropriate force on the heart, at the risk of overly restricting or dilating it. Accurately characterizing the mechanical properties of the myocardial wall is thus essential, through analysis of muscle orientation and elasticity. In this study, we investigated the Hertz contact theory for characterizing cardiac tissue, using nanoindentation measurements to distinguish different patterns in the local myocardium. We then evaluated the predictive accuracy of this model using Finite Element Analysis (FEA) to mimic the diastolic phase of the heart. Our results, extracted from instrumented nanoindentation experiments in a liquid environment using five pig hearts, revealed variations in elasticity according to the local orientation of the myocardial tissue. In addition, applying the Finite Element Method (FEM) in our model based on transverse isotropy and local tissue orientation proved able to accurately simulate the passive filling of a left ventricle (LV) in a representative 3D geometry. Our model enables improved understanding of the underlying mechanical properties of the LV wall and can serve as a guide for designing and manufacturing biomedical material better adapted to the local epicardial tissue.

摘要

近年来,人们针对不同的治疗目的,对应用于心外膜的生物材料进行了深入研究。然而,其对心脏的机械影响尚未得到明确确定。大多数用于心外膜应用的生物材料被制造成具有各向同性几何形状的膜或心脏补片,这与心肌壁运动不太适配。心肌在收缩和舒张期间产生的复杂力具有不同的方向。无法适应这些特定方向的膜或心脏补片将对心脏施加不适当的力,从而有过度限制或扩张的风险。因此,通过分析肌肉方向和弹性,准确描述心肌壁的机械性能至关重要。在这项研究中,我们使用纳米压痕测量来区分局部心肌中的不同模式,研究了用于描述心脏组织的赫兹接触理论。然后,我们使用有限元分析(FEA)来模拟心脏的舒张阶段,评估了该模型的预测准确性。我们从五个猪心在液体环境中进行的仪器化纳米压痕实验中提取结果,结果表明根据心肌组织的局部方向,弹性会发生变化。此外,在我们基于横向各向同性和局部组织方向的模型中应用有限元法(FEM)能够准确模拟具有代表性的 3D 几何形状的左心室(LV)的被动充盈。我们的模型能够更好地理解 LV 壁的潜在机械性能,并为设计和制造更好地适应局部心外膜组织的生物医学材料提供指导。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验