Suppr超能文献

基于微观结构的左心室被动膨胀有限元模型。

Microstructure-based finite element model of left ventricle passive inflation.

机构信息

Department of Mechanical Engineering, Michigan State University, East Lansing, MI, USA.

California Medical Innovations Institute, San Diego, CA, USA.

出版信息

Acta Biomater. 2019 May;90:241-253. doi: 10.1016/j.actbio.2019.04.016. Epub 2019 Apr 11.

Abstract

Isolating the role(s) of microstructural pathological features in affecting diastolic filling is important in developing targeted treatments for heart diseases. We developed a microstructure-based constitutive model of the myocardium and implemented it in an efficient open-source finite element modeling framework to simulate passive inflation of the left ventricle (LV) in a representative 3D geometry based on experimentally measured muscle fiber architecture. The constitutive model was calibrated using previous tissue-level biaxial mechanical test data derived from the canine heart and validated with independent sets of measurements made at both the isolated constituent and organ level. Using the validated model, we investigated the load taken up by each tissue constituent and their effects on LV passive inflation. The model predicts that the LV compliance is sensitive to the collagen ultrastructure, specifically, the collagen fiber azimuthal angle with respect to the local muscle fiber direction and its waviness. The model also predicts that most of the load in the sub-epicardial and sub-endocardial regions is taken up, respectively, by the muscle fibers and collagen fiber network. This result suggests that normalizing LV passive stiffness by altering the collagen fiber network and myocyte stiffness is most effective when applied to the sub-endocardial and sub-epicardial regions, respectively. This finding may have implication for the development of new pharmaceutical treatments targeting individual cardiac tissue constituents to normalize LV filling function in heart diseases. STATEMENT OF SIGNIFICANCE: Current constitutive models describing the tissue mechanical behavior of the myocardium are largely phenomenological. While able to represent the bulk tissue mechanical behavior, these models cannot distinguish the contribution of the tissue constituents and their ultrastructure to heart function. Although microstructure-based constitutive models can be used to isolate the role of tissue ultrastructure, they have not been implemented in a computational framework that can accommodate realistic 3D organ geometry. The present study addresses these issues by developing and validating a microstructure-based computational modeling framework, which is used to investigate the role of tissue constituents and their ultrastructure in affecting heart function.

摘要

分离微观结构病理特征对舒张填充的影响作用对于开发针对心脏疾病的靶向治疗方法很重要。我们开发了一种基于心肌微观结构的本构模型,并将其实现到一个高效的开源有限元建模框架中,以根据实验测量的肌肉纤维结构模拟左心室(LV)在代表性 3D 几何形状中的被动膨胀。本构模型使用来自犬心脏的先前组织水平双轴力学测试数据进行校准,并使用独立的组成和器官水平测量数据进行验证。使用经过验证的模型,我们研究了每个组织成分所承受的载荷及其对 LV 被动膨胀的影响。该模型预测 LV 顺应性对胶原超微结构敏感,特别是胶原纤维方位角与局部肌纤维方向及其波纹度有关。该模型还预测,心外膜下和心内膜下区域的大部分载荷分别由肌纤维和胶原纤维网络承担。该结果表明,通过改变胶原纤维网络和心肌细胞刚度来使 LV 被动僵硬正常化,在心内膜下和心外膜下区域分别应用时效果最佳。这一发现可能对开发针对单个心脏组织成分的新型药物治疗方法以正常化心脏疾病中的 LV 填充功能具有重要意义。

意义陈述

当前描述心肌组织力学行为的本构模型在很大程度上是唯象的。虽然这些模型能够代表组织的整体力学行为,但它们无法区分组织成分及其超微结构对心脏功能的贡献。尽管基于微观结构的本构模型可用于隔离组织超微结构的作用,但它们尚未在能够适应实际 3D 器官几何形状的计算框架中实施。本研究通过开发和验证基于微观结构的计算建模框架来解决这些问题,该框架用于研究组织成分及其超微结构对心脏功能的影响作用。

相似文献

10
A finite element model of myocardial infarction using a composite material approach.一种采用复合材料方法的心肌梗死有限元模型。
Comput Methods Biomech Biomed Engin. 2018 Jan;21(1):33-46. doi: 10.1080/10255842.2017.1416355. Epub 2017 Dec 18.

本文引用的文献

8
On the tear resistance of skin.论皮肤的抗撕裂性。
Nat Commun. 2015 Mar 27;6:6649. doi: 10.1038/ncomms7649.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验