Suppr超能文献

氘代碳-11 和氟-18 标记正电子发射断层扫描放射性药物的动力学同位素效应和合成策略。

Kinetic isotope effects and synthetic strategies for deuterated carbon-11 and fluorine-18 labelled PET radiopharmaceuticals.

机构信息

National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia; Department of Nuclear Medicine and PET, Liverpool Hospital, Liverpool, NSW 2170, Australia.

National Deuteration Facility (NDF) & Human Health, Australian Nuclear Science and Technology Organisation (ANSTO), Lucas Heights, NSW 2234, Australia; Department of Nuclear Medicine and PET, Prince of Wales Hospital, Randwick, NSW 2031, Australia; School of Chemistry, University of New South Wales (UNSW), Kensington, NSW 2052, Australia.

出版信息

Nucl Med Biol. 2021 May-Jun;96-97:112-147. doi: 10.1016/j.nucmedbio.2021.03.011. Epub 2021 Apr 16.

Abstract

The deuterium labelling of pharmaceuticals is a useful strategy for altering pharmacokinetic properties, particularly for improving metabolic resistance. The pharmacological effects of such metabolites are often assumed to be negligible during standard drug discovery and are factored in later at the clinical phases of development, where the risks and benefits of the treatment and side-effects can be wholly assessed. This paradigm does not translate to the discovery of radiopharmaceuticals, however, as the confounding effects of radiometabolites can inevitably show in preliminary positron emission tomography (PET) scans and thus complicate interpretation. Consequently, the formation of radiometabolites is crucial to take into consideration, compared to non-radioactive metabolites, and the application of deuterium labelling is a particularly attractive approach to minimise radiometabolite formation. Herein, we provide a comprehensive overview of the deuterated carbon-11 and fluorine-18 radiopharmaceuticals employed in PET imaging experiments. Specifically, we explore six categories of deuterated radiopharmaceuticals used to investigate the activities of monoamine oxygenase (MAO), choline, translocator protein (TSPO), vesicular monoamine transporter 2 (VMAT2), neurotransmission and the diagnosis of Alzheimer's disease; from which we derive four prominent deuteration strategies giving rise to a kinetic isotope effect (KIE) for reducing the rate of metabolism. Synthetic approaches for over thirty of these deuterated radiopharmaceuticals are discussed from the perspective of deuterium and radioisotope incorporation, alongside an evaluation of the deuterium labelling and radiolabelling efficacies across these independent studies. Clinical and manufacturing implications are also discussed to provide a more comprehensive overview of how deuterated radiopharmaceuticals may be introduced to routine practice.

摘要

药物的氘标记是改变药代动力学性质的一种有用策略,特别是可以提高代谢稳定性。在标准药物发现过程中,通常假设这些代谢物的药理作用可以忽略不计,而是在开发的临床阶段后期考虑,在这个阶段可以全面评估治疗和副作用的风险和益处。然而,这种范例并不适用于放射性药物的发现,因为放射性代谢物的混杂影响不可避免地会在初步正电子发射断层扫描(PET)扫描中显现出来,从而使解释变得复杂。因此,与非放射性代谢物相比,必须考虑放射性代谢物的形成,氘标记的应用是一种特别有吸引力的方法,可以最大程度地减少放射性代谢物的形成。本文提供了在 PET 成像实验中使用的氘标记的碳-11 和氟-18 放射性药物的全面概述。具体来说,我们探索了用于研究单胺氧化酶(MAO)、胆碱、转位蛋白(TSPO)、囊泡单胺转运体 2(VMAT2)、神经递质和阿尔茨海默病诊断的六类氘标记放射性药物;从中得出了四种主要的氘化策略,这些策略产生了动力学同位素效应(KIE),从而降低了代谢速率。从氘和放射性同位素掺入的角度讨论了其中三十多种氘标记放射性药物的合成方法,并评估了这些独立研究中氘标记和放射性标记效率。还讨论了临床和制造方面的影响,以更全面地了解如何将氘标记放射性药物引入常规实践。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验