Zhu Ming, Wu Kai, Zhou Yuanzhen, Wang Zeyu, Qiao Junfeng, Wang Yong, Fan Xing, Nong Yonghong, Zi Wenhua
Honghe Cigarette Factory, Hongyunhonghe Tobacco Group Co., Ltd., Honghe 652300, China.
College of Energy and Environment Science, Yunnan Normal University, Kunming 650500, China.
Math Biosci Eng. 2021 Mar 15;18(3):2496-2507. doi: 10.3934/mbe.2021127.
The stability of the moisture content of the cigarette is an important index to evaluate the quality of the cigarette. The cooling moisture content after cut tobacco drying process is a key factor affecting the stability of the moisture content of the cigarette. In order to realize its accurate prediction and ensure the stability, in Honghe cigarette factory, a cooling moisture content prediction model is built based on a particle swarm optimization-extreme learning machine (PSO-ELM) algorithm via the historical production data. Besides, the proposed PSO-ELM algorithm is also compared with multiple linear regression (MLR), support vector machine (SVM) and the traditional extreme learning machine (ELM) algorithms in the same data set on the prediction. The prediction accuracy of PSO-ELM method is the highest and the average error of the prediction standard is the lowest. The results indicated the proposed method can achieve a better prediction performance over compared methods and it provides a new method to realize the prediction of the cooling moisture content after cut tobacco drying process.
卷烟水分含量的稳定性是评估卷烟质量的重要指标。切丝干燥后的冷却水分含量是影响卷烟水分含量稳定性的关键因素。为实现其准确预测并确保稳定性,在红河卷烟厂,基于粒子群优化-极限学习机(PSO-ELM)算法,通过历史生产数据建立了冷却水分含量预测模型。此外,在同一数据集上,将所提出的PSO-ELM算法与多元线性回归(MLR)、支持向量机(SVM)和传统极限学习机(ELM)算法在预测方面进行了比较。PSO-ELM方法的预测精度最高,预测标准的平均误差最低。结果表明,所提出的方法与对比方法相比能够实现更好的预测性能,并且为实现切丝干燥后冷却水分含量的预测提供了一种新方法。