Anjum Sadia, Hussain Lal, Ali Mushtaq, Abbasi Adeel Ahmed, Duong Tim Q.
Department of IT, Hazara University, Mansehra 21120, KPK, Pakistan.
Department of Computer Science & IT, University of Azad Jammu and Kashmir, King Abdullah Campus, Muzaffarabad 13100, Pakistan.
Math Biosci Eng. 2021 Mar 28;18(3):2882-2908. doi: 10.3934/mbe.2021146.
Among the other cancer types, the brain tumor is one the leading cause of cancer across globe. If the tumor is properly identified at an earlier stage, then the chances of the survival can be increased. To categorize the brain tumor there are several factors including texture, type and location of brain tumor. We proposed a novel reconstruction independent component analysis (RICA) feature extraction method to detect multi-class brain tumor types (pituitary, meningioma, and glioma). We then employed the robust machine learning techniques as support vector machine (SVM) with quadratic and linear kernels and linear discriminant analysis (LDA). For training and testing of the data validation, a 10-fold cross validation was employed. For the multi-class classification, the sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), accuracy and AUC were, respectively, 97.78%, 100%, 100%, 99.07, 99.34% and 0.9892 to detect pituitary using SVM Cubic followed by meningioma with accuracy (96.96%0, AUC (0.9348) and glioma with accuracy (95.88%), AUC (0.9635). The findings indicates that RICA feature based proposed methodology has more potential to detect the multiclass brain tumor types for improving diagnostic efficiency and can further improve the prediction accuracy to achieve the clinical outcomes.
在其他癌症类型中,脑肿瘤是全球癌症的主要病因之一。如果能在早期正确识别肿瘤,那么存活几率就会增加。对脑肿瘤进行分类时,有几个因素,包括脑肿瘤的质地、类型和位置。我们提出了一种新颖的独立于重建的成分分析(RICA)特征提取方法来检测多类脑肿瘤类型(垂体瘤、脑膜瘤和神经胶质瘤)。然后,我们采用了强大的机器学习技术,如具有二次和线性核的支持向量机(SVM)以及线性判别分析(LDA)。为了进行数据验证的训练和测试,采用了10折交叉验证。对于多类分类,使用SVM立方检测垂体瘤时,灵敏度、特异性、阳性预测值(PPV)、阴性预测值(NPV)、准确率和AUC分别为97.78%、100%、100%、99.07%、99.34%和0.9892,接着检测脑膜瘤时准确率为96.96%,AUC为0.9348,检测神经胶质瘤时准确率为95.88%,AUC为0.9635。研究结果表明,基于RICA特征提出的方法在检测多类脑肿瘤类型以提高诊断效率方面具有更大潜力,并且可以进一步提高预测准确率以实现临床结果。