Suppr超能文献

NKX3.1 定位于线粒体可抑制前列腺癌的起始。

NKX3.1 Localization to Mitochondria Suppresses Prostate Cancer Initiation.

机构信息

Department of Molecular Pharmacology and Therapeutics, Columbia University Irving Medical Center, New York, New York.

Department of Biomedical Research, University of Bern, Bern, Switzerland.

出版信息

Cancer Discov. 2021 Sep;11(9):2316-2333. doi: 10.1158/2159-8290.CD-20-1765. Epub 2021 Apr 23.

Abstract

Mitochondria provide the first line of defense against the tumor-promoting effects of oxidative stress. Here we show that the prostate-specific homeoprotein NKX3.1 suppresses prostate cancer initiation by protecting mitochondria from oxidative stress. Integrating analyses of genetically engineered mouse models, human prostate cancer cells, and human prostate cancer organotypic cultures, we find that, in response to oxidative stress, NKX3.1 is imported to mitochondria via the chaperone protein HSPA9, where it regulates transcription of mitochondrial-encoded electron transport chain (ETC) genes, thereby restoring oxidative phosphorylation and preventing cancer initiation. Germline polymorphisms of associated with increased cancer risk fail to protect from oxidative stress or suppress tumorigenicity. Low expression levels of combined with low expression of mitochondrial ETC genes are associated with adverse clinical outcome, whereas high levels of mitochondrial NKX3.1 protein are associated with favorable outcome. This work reveals an extranuclear role for NKX3.1 in suppression of prostate cancer by protecting mitochondrial function. SIGNIFICANCE: Our findings uncover a nonnuclear function for NKX3.1 that is a key mechanism for suppression of prostate cancer. Analyses of the expression levels and subcellular localization of NKX3.1 in patients at risk of cancer progression may improve risk assessment in a precision prevention paradigm, particularly for men undergoing active surveillance...

摘要

线粒体为抵抗氧化应激的致癌作用提供了第一道防线。在这里,我们表明,前列腺特异性同源盒蛋白 NKX3.1 通过保护线粒体免受氧化应激来抑制前列腺癌的起始。通过对基因工程小鼠模型、人类前列腺癌细胞和人类前列腺癌器官培养物的综合分析,我们发现,NKX3.1 在应激反应下通过伴侣蛋白 HSPA9 被导入线粒体,在那里它调节线粒体编码的电子传递链 (ETC) 基因的转录,从而恢复氧化磷酸化并防止癌症起始。与增加癌症风险相关的 种系多态性不能防止氧化应激或抑制肿瘤发生。与不良临床结局相关的是 表达水平低加上线粒体 ETC 基因表达水平低,而高水平的线粒体 NKX3.1 蛋白与良好的结局相关。这项工作揭示了 NKX3.1 在抑制前列腺癌中的核外作用,通过保护线粒体功能。意义:我们的发现揭示了 NKX3.1 的非核功能,这是抑制前列腺癌的关键机制。分析有癌症进展风险的患者的 NKX3.1 表达水平和亚细胞定位可能会改善精准预防范式中的风险评估,特别是对于接受主动监测的男性...

相似文献

1
NKX3.1 Localization to Mitochondria Suppresses Prostate Cancer Initiation.
Cancer Discov. 2021 Sep;11(9):2316-2333. doi: 10.1158/2159-8290.CD-20-1765. Epub 2021 Apr 23.
3
Metformin Overcomes the Consequences of NKX3.1 Loss to Suppress Prostate Cancer Progression.
Eur Urol. 2024 Apr;85(4):361-372. doi: 10.1016/j.eururo.2023.07.016. Epub 2023 Aug 31.
5
Interventions for promoting habitual exercise in people living with and beyond cancer.
Cochrane Database Syst Rev. 2018 Sep 19;9(9):CD010192. doi: 10.1002/14651858.CD010192.pub3.
6
Screening for prostate cancer.
Cochrane Database Syst Rev. 2013 Jan 31;2013(1):CD004720. doi: 10.1002/14651858.CD004720.pub3.
8
Early versus deferred androgen suppression in the treatment of advanced prostatic cancer.
Cochrane Database Syst Rev. 2002(1):CD003506. doi: 10.1002/14651858.CD003506.
9
Antioxidants for male subfertility.
Cochrane Database Syst Rev. 2014(12):CD007411. doi: 10.1002/14651858.CD007411.pub3. Epub 2014 Dec 15.
10
A Novel Design of a Portable Birdcage via Meander Line Antenna (MLA) to Lower Beta Amyloid (Aβ) in Alzheimer's Disease.
IEEE J Transl Eng Health Med. 2025 Apr 10;13:158-173. doi: 10.1109/JTEHM.2025.3559693. eCollection 2025.

引用本文的文献

4
Prostate luminal cell plasticity and cancer.
Cancer Lett. 2024 Dec 25;611:217430. doi: 10.1016/j.canlet.2024.217430.
5
SUMO E3 ligase MUL1 inhibits lymph node metastasis of bladder cancer by mediating mitochondrial HSPA9 translocation.
Int J Biol Sci. 2024 Jul 15;20(10):3986-4006. doi: 10.7150/ijbs.98772. eCollection 2024.
7
About metformin and its action on the mitochondrial respiratory chain in prostate cancer.
Transl Androl Urol. 2024 May 31;13(5):909-914. doi: 10.21037/tau-23-602. Epub 2024 May 16.
9
Validation of potential RNA biomarkers for prostate cancer diagnosis and monitoring in plasma and urinary extracellular vesicles.
Front Mol Biosci. 2023 Nov 30;10:1279854. doi: 10.3389/fmolb.2023.1279854. eCollection 2023.
10
Association of HLA-A*11:01, -A*24:02, and -B*18:01 with Prostate Cancer Risk: A Case-Control Study.
Int J Mol Sci. 2023 Oct 20;24(20):15398. doi: 10.3390/ijms242015398.

本文引用的文献

2
Cancer statistics, 2020.
CA Cancer J Clin. 2020 Jan;70(1):7-30. doi: 10.3322/caac.21590. Epub 2020 Jan 8.
3
Mitochondrial localization, import, and mitochondrial function of the androgen receptor.
J Biol Chem. 2019 Apr 19;294(16):6621-6634. doi: 10.1074/jbc.RA118.006727. Epub 2019 Feb 21.
4
Cooperation of loss of and inflammation in prostate cancer initiation.
Dis Model Mech. 2018 Nov 16;11(11):dmm035139. doi: 10.1242/dmm.035139.
5
Precision Prevention and Early Detection of Cancer: Fundamental Principles.
Cancer Discov. 2018 Jul;8(7):803-811. doi: 10.1158/2159-8290.CD-17-1415. Epub 2018 Jun 15.
6
The Evolutionary Landscape of Localized Prostate Cancers Drives Clinical Aggression.
Cell. 2018 May 3;173(4):1003-1013.e15. doi: 10.1016/j.cell.2018.03.029. Epub 2018 Apr 19.
7
Altered mitochondrial genome content signals worse pathology and prognosis in prostate cancer.
Prostate. 2018 Jan;78(1):25-31. doi: 10.1002/pros.23440. Epub 2017 Nov 14.
8
A CRISPR screen identifies a pathway required for paraquat-induced cell death.
Nat Chem Biol. 2017 Dec;13(12):1274-1279. doi: 10.1038/nchembio.2499. Epub 2017 Oct 23.
9
Mortalin deficiency suppresses fibrosis and induces apoptosis in keloid spheroids.
Sci Rep. 2017 Oct 11;7(1):12957. doi: 10.1038/s41598-017-13485-y.
10
Mitochondrial mutations drive prostate cancer aggression.
Nat Commun. 2017 Sep 22;8(1):656. doi: 10.1038/s41467-017-00377-y.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验