Suppr超能文献

谷氨酸转运体的快速调节:我们的研究方向在哪里?

Rapid Regulation of Glutamate Transport: Where Do We Go from Here?

机构信息

Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, PA, 19104-4318, USA.

Department of Systems Pharmacology and Translational Therapeutics, Children's Hospital of Philadelphia, 502N Abramson Pediatric Research Building, 3615 Civic Center Boulevard, Philadelphia, PA, 19104-4318, USA.

出版信息

Neurochem Res. 2022 Jan;47(1):61-84. doi: 10.1007/s11064-021-03329-7. Epub 2021 Apr 24.

Abstract

Glutamate is the predominant excitatory neurotransmitter in the mammalian central nervous system (CNS). A family of five Na-dependent transporters maintain low levels of extracellular glutamate and shape excitatory signaling. Shortly after the research group of the person being honored in this special issue (Dr. Baruch Kanner) cloned one of these transporters, his group and several others showed that their activity can be acutely (within minutes to hours) regulated. Since this time, several different signals and post-translational modifications have been implicated in the regulation of these transporters. In this review, we will provide a brief introduction to the distribution and function of this family of glutamate transporters. This will be followed by a discussion of the signals that rapidly control the activity and/or localization of these transporters, including protein kinase C, ubiquitination, glutamate transporter substrates, nitrosylation, and palmitoylation. We also include the results of our attempts to define the role of palmitoylation in the regulation of GLT-1 in crude synaptosomes. In some cases, the mechanisms have been fairly well-defined, but in others, the mechanisms are not understood. In several cases, contradictory phenomena have been observed by more than one group; we describe these studies with the goal of identifying the opportunities for advancing the field. Abnormal glutamatergic signaling has been implicated in a wide variety of psychiatric and neurologic disorders. Although recent studies have begun to link regulation of glutamate transporters to the pathogenesis of these disorders, it will be difficult to determine how regulation influences signaling or pathophysiology of glutamate without a better understanding of the mechanisms involved.

摘要

谷氨酸是哺乳动物中枢神经系统(CNS)中主要的兴奋性神经递质。一组五种 Na 依赖性转运体维持细胞外谷氨酸的低水平,并塑造兴奋性信号。在这个特刊中受表彰的人的研究小组(Baruch Kanner 博士)克隆其中一种转运体后不久,他的小组和其他几个小组表明,它们的活性可以被快速(几分钟到几小时内)调节。从那时起,几种不同的信号和翻译后修饰已被牵连到这些转运体的调节中。在这篇综述中,我们将简要介绍这种谷氨酸转运体家族的分布和功能。接着将讨论快速控制这些转运体活性和/或定位的信号,包括蛋白激酶 C、泛素化、谷氨酸转运体底物、亚硝基化和棕榈酰化。我们还包括了我们试图定义棕榈酰化在 GLT-1 调节中的作用的结果在粗突触体中。在某些情况下,机制已经相当明确,但在其他情况下,机制尚不清楚。在某些情况下,不止一个小组观察到相互矛盾的现象;我们描述这些研究的目的是确定该领域的发展机会。异常的谷氨酸能信号已被牵连到广泛的精神和神经疾病中。尽管最近的研究已经开始将谷氨酸转运体的调节与这些疾病的发病机制联系起来,但如果没有更好地理解所涉及的机制,就很难确定调节如何影响谷氨酸的信号或病理生理学。

相似文献

1
Rapid Regulation of Glutamate Transport: Where Do We Go from Here?
Neurochem Res. 2022 Jan;47(1):61-84. doi: 10.1007/s11064-021-03329-7. Epub 2021 Apr 24.
4
Glutamate transporter coupling to Na,K-ATPase.
J Neurosci. 2009 Jun 24;29(25):8143-55. doi: 10.1523/JNEUROSCI.1081-09.2009.
5
Transcriptional Regulation of Glutamate Transporters: From Extracellular Signals to Transcription Factors.
Adv Pharmacol. 2016;76:103-45. doi: 10.1016/bs.apha.2016.01.004. Epub 2016 Mar 24.
7
The ionic stoichiometry of the GLAST glutamate transporter in salamander retinal glia.
J Physiol. 2006 Dec 1;577(Pt 2):591-9. doi: 10.1113/jphysiol.2006.116830. Epub 2006 Sep 28.
8
Glutamate transporters: Critical components of glutamatergic transmission.
Neuropharmacology. 2021 Jul 1;192:108602. doi: 10.1016/j.neuropharm.2021.108602. Epub 2021 May 12.
9
Modulation of the neuronal glutamate transporter EAAT4 by two interacting proteins.
Nature. 2001 Mar 1;410(6824):89-93. doi: 10.1038/35065091.

引用本文的文献

1
DNA hypomethylator phenotype reprograms glutamatergic network in receptor tyrosine kinase gene-mutated glioblastoma.
Acta Neuropathol Commun. 2024 Mar 13;12(1):40. doi: 10.1186/s40478-024-01750-x.
2
Palmitoylation of solute carriers.
Biochem Pharmacol. 2023 Sep;215:115695. doi: 10.1016/j.bcp.2023.115695. Epub 2023 Jul 20.
3
Astrocytic Glutamate Transporters and Migraine.
Neurochem Res. 2023 Apr;48(4):1167-1179. doi: 10.1007/s11064-022-03849-w. Epub 2022 Dec 30.

本文引用的文献

3
Endocytosis of the glutamate transporter 1 is regulated by laforin and malin: Implications in Lafora disease.
Glia. 2021 May;69(5):1170-1183. doi: 10.1002/glia.23956. Epub 2020 Dec 23.
4
Role of endothelial nitric oxide synthase for early brain injury after subarachnoid hemorrhage in mice.
J Cereb Blood Flow Metab. 2021 Jul;41(7):1669-1681. doi: 10.1177/0271678X20973787. Epub 2020 Nov 30.
5
Wnt Signaling Through Nitric Oxide Synthase Promotes the Formation of Multi-Innervated Spines.
Front Synaptic Neurosci. 2020 Sep 4;12:575863. doi: 10.3389/fnsyn.2020.575863. eCollection 2020.
7
The interaction of lead exposure and CCM3 defect plays an important role in regulating angiogenesis through eNOS/NO pathway.
Environ Toxicol Pharmacol. 2020 Oct;79:103407. doi: 10.1016/j.etap.2020.103407. Epub 2020 May 11.
8
Human brain neurons express a novel splice variant of excitatory amino acid transporter 5 (hEAAT5v).
J Comp Neurol. 2020 Dec 1;528(17):3134-3142. doi: 10.1002/cne.24907. Epub 2020 Apr 3.
9
Glutamate Transporters and Mitochondria: Signaling, Co-compartmentalization, Functional Coupling, and Future Directions.
Neurochem Res. 2020 Mar;45(3):526-540. doi: 10.1007/s11064-020-02974-8. Epub 2020 Jan 30.
10
Amphetamine Stimulates Endocytosis of the Norepinephrine and Neuronal Glutamate Transporters in Cultured Locus Coeruleus Neurons.
Neurochem Res. 2020 Jun;45(6):1410-1419. doi: 10.1007/s11064-019-02939-6. Epub 2020 Jan 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验