Suppr超能文献

基于猪肉的食品清真蛋白质组学大规模串联质谱的比较数据库搜索引擎分析

Comparative database search engine analysis on massive tandem mass spectra of pork-based food products for halal proteomics.

作者信息

Amir Siti Hajar, Yuswan Mohd Hafis, Aizat Wan Mohd, Mansor Muhammad Kamaruzaman, Desa Mohd Nasir Mohd, Yusof Yus Aniza, Song Lai Kok, Mustafa Shuhaimi

机构信息

Laboratory of Halal Services, Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.

Laboratory of Halal Services, Halal Products Research Institute, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia; Consortium of Malaysia IPT Halal Institute, Ministry of Higher Education, Complex E, Federal Government Administrative Centre, 62604 Putrajaya, Malaysia.

出版信息

J Proteomics. 2021 Jun 15;241:104240. doi: 10.1016/j.jprot.2021.104240. Epub 2021 Apr 21.

Abstract

Mass spectrometry-based proteomics relies on dedicated software for peptide and protein identification. These software include open-source or commercial-based search engines; wherein, they employ different algorithms to establish their scoring and identified proteins. Although previous comparative studies have differentiated the proteomics results from different software, there are still yet studies specifically been conducted to compare and evaluate the search engine in the field of halal analysis. This is important because the halal analysis is often using commercial meat samples that have been subjected to various processing, further complicating its analysis. Thus, this study aimed to assess three open-source search engines (Comet, X! Tandem, and ProteinProspector) and a commercial-based search engine (ProteinPilot™) against 135 raw tandem mass spectrometry data files from 15 types of pork-based food products for halal analysis. Each database search engine contained high false-discovery rate (FDR); however, a post-searching algorithm called PeptideProphet managed to reduce the FDR, except for ProteinProspector and ProteinPilot™. From this study, the combined database search engine (executed by iProphet) reveals a thorough protein list for pork-based food products; wherein the most abundant proteins are myofibrillar proteins. Thus, this proteomics study will aid the identification of potential peptide and protein biomarkers for future precision halal analysis. SIGNIFICANCE: A critical challenge of halal proteomics is the availability of a database to confirm the inferential peptides as well as proteins. Currently, the established database such as UniProtKB is related to animal proteome; however, the halal proteomics is related to the highly processed meat-based food products. This study highlights the use of different database search engines (Comet, X! Tandem, ProteinProspector, and ProteinPilot™) and their respective algorithms to analyse 135 raw tandem mass spectrometry data files from 15 types of pork-based food products. This is the first attempt that has compared different database search engines in the context of halal proteomics to ensure the effectiveness of controlling the FDR. Previous studies were just focused on the advantages of a certain algorithm over another. Moreover, other previous studies also have mainly reported the use of mass spectrometry-based shotgun proteomics for meat authentication (the most similar field to halal analysis), but none of the studies were reported on halal aspects that used samples originated from highly processed food products. Hence, a systematic comparative study is duly needed for a more comprehensive and thorough proteomics analysis for such samples. In this study, our combinatorial approach for halal proteomics results from the different search engines used (Comet, X! Tandem, and ProteinProspector) has successfully generated a comprehensive spectral library for the pork-based meat products. This combined spectral library is freely available at https://data.mendeley.com/datasets/6dmm8659rm/3. Thus far, this is the first and new attempt at establishing a spectral library for halal proteomics. We also believe this study is a pioneer for halal proteomics that aimed at non-conventional and non-model organism proteomics, protein analytics, protein bioinformatics, and potential biomarker discovery.

摘要

基于质谱的蛋白质组学依赖专门软件来鉴定肽段和蛋白质。这些软件包括开源或商业化搜索引擎;它们采用不同算法来确定评分和已鉴定的蛋白质。尽管先前的比较研究区分了不同软件的蛋白质组学结果,但在清真分析领域仍缺乏专门比较和评估搜索引擎的研究。这很重要,因为清真分析通常使用经过各种加工的商业肉类样本,这使其分析更加复杂。因此,本研究旨在针对来自15种猪肉类食品的135个原始串联质谱数据文件,评估三个开源搜索引擎(Comet、X! Tandem和ProteinProspector)以及一个商业化搜索引擎(ProteinPilot™)用于清真分析。每个数据库搜索引擎的错误发现率(FDR)都很高;然而,一种名为PeptideProphet的搜索后算法成功降低了FDR,但ProteinProspector和ProteinPilot™除外。通过本研究,联合数据库搜索引擎(由iProphet执行)揭示了猪肉类食品的完整蛋白质列表;其中最丰富的蛋白质是肌原纤维蛋白。因此,这项蛋白质组学研究将有助于识别潜在的肽段和蛋白质生物标志物,用于未来的精准清真分析。意义:清真蛋白质组学的一个关键挑战是缺乏用于确认推断肽段和蛋白质的数据库。目前,如UniProtKB等已建立的数据库与动物蛋白质组相关;然而,清真蛋白质组学涉及高度加工的肉类食品。本研究强调使用不同的数据库搜索引擎(Comet、X! Tandem、ProteinProspector和ProteinPilot™)及其各自算法来分析来自15种猪肉类食品的135个原始串联质谱数据文件。这是首次在清真蛋白质组学背景下比较不同数据库搜索引擎以确保控制FDR有效性的尝试。先前的研究仅关注某一算法相对于另一算法的优势。此外,其他先前研究主要报道了基于质谱的鸟枪法蛋白质组学用于肉类鉴定(与清真分析最相似的领域),但没有研究报道使用源自高度加工食品样本的清真方面。因此,对于此类样本进行更全面和深入的蛋白质组学分析,确实需要系统的比较研究。在本研究中,我们针对清真蛋白质组学采用不同搜索引擎(Comet、X! Tandem和ProteinProspector)的组合方法成功生成了猪肉类产品的综合光谱库。这个综合光谱库可在https://data.mendeley.com/datasets/6dmm8659rm/3免费获取。到目前为止,这是建立清真蛋白质组学光谱库的首次新尝试。我们还认为本研究是针对非常规和非模式生物蛋白质组学、蛋白质分析、蛋白质生物信息学以及潜在生物标志物发现的清真蛋白质组学的先驱。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验