Suppr超能文献

利用 JL9 希瓦氏菌原位生成的生物锰氧化物增强磺胺甲恶唑的降解性能。

Enhanced performance of sulfamethoxazole degradation using Achromobacter sp. JL9 with in-situ generated biogenic manganese oxides.

机构信息

School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.

School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, PR China.

出版信息

Bioresour Technol. 2021 Aug;333:125089. doi: 10.1016/j.biortech.2021.125089. Epub 2021 Apr 1.

Abstract

Little information is known about the relationships of in-situ generated BioMnOx and sulfamethoxazole (SMX) degradation. In this study, a novel efficient bioremediation technology was presented for simultaneous remove the nitrogen-N, SMX, and Mn(II) from water. Mn(II) can be completely oxidized with a oxidized rate of 0.071 mg/(L·h), the SMX and nitrogen-N removal ratios were 97.43% and 85.61%, respectively. The Ratkowsky kinetic models were established for described the SMX degradation influence by temperature. Furthermore, the microbial degradation, Mn(III) trapping, and intermediates identified experiments were used to explore the mechanisms of SMX and nitrogen-N removal. These results indicated that microbial activity play a decisive role in SMX and nitrogen-N removal, and the catalytic character of sediment could enhanced the SMX degradation. Furthermore, proposed the possible SMX degradation pathway based on the intermediates and microbial metabolism theory, the environmental toxicity of SMX and each intermediates were calculated via ECOSAR program.

摘要

关于原位生成的 BioMnOx 与磺胺甲恶唑 (SMX) 降解之间的关系,目前所知甚少。本研究提出了一种新型高效的生物修复技术,可同时去除水中的氮-N、SMX 和 Mn(II)。Mn(II) 可完全氧化,氧化速率为 0.071mg/(L·h),SMX 和氮-N 的去除率分别为 97.43%和 85.61%。建立了 Ratkowsky 动力学模型来描述温度对 SMX 降解的影响。此外,还进行了微生物降解、Mn(III)捕获和中间产物鉴定实验,以探讨 SMX 和氮-N 去除的机制。结果表明,微生物活性在 SMX 和氮-N 的去除中起决定性作用,沉积物的催化特性可以增强 SMX 的降解。此外,根据中间产物和微生物代谢理论,提出了可能的 SMX 降解途径,通过 ECOSAR 程序计算了 SMX 和各中间产物的环境毒性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验