Suppr超能文献

基于无匹配训练数据的加速 3D 时间飞跃磁共振血管成像的两阶段深度学习。

Two-stage deep learning for accelerated 3D time-of-flight MRA without matched training data.

机构信息

Department of Bio and Brain Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.

Department of Radiology, Seoul National University College of Medicine, Seoul National University Bundang Hospital, Seongnam, Republic of Korea.

出版信息

Med Image Anal. 2021 Jul;71:102047. doi: 10.1016/j.media.2021.102047. Epub 2021 Apr 5.

Abstract

Time-of-flight magnetic resonance angiography (TOF-MRA) is one of the most widely used non-contrast MR imaging methods to visualize blood vessels, but due to the 3-D volume acquisition highly accelerated acquisition is necessary. Accordingly, high quality reconstruction from undersampled TOF-MRA is an important research topic for deep learning. However, most existing deep learning works require matched reference data for supervised training, which are often difficult to obtain. By extending the recent theoretical understanding of cycleGAN from the optimal transport theory, here we propose a novel two-stage unsupervised deep learning approach, which is composed of the multi-coil reconstruction network along the coronal plane followed by a multi-planar refinement network along the axial plane. Specifically, the first network is trained in the square-root of sum of squares (SSoS) domain to achieve high quality parallel image reconstruction, whereas the second refinement network is designed to efficiently learn the characteristics of highly-activated blood flow using double-headed projection discriminator. Extensive experiments demonstrate that the proposed learning process without matched reference exceeds performance of state-of-the-art compressed sensing (CS)-based method and provides comparable or even better results than supervised learning approaches.

摘要

时间飞跃磁共振血管造影术(TOF-MRA)是最广泛使用的非对比磁共振成像方法之一,用于可视化血管,但由于 3-D 体积采集,需要高度加速采集。因此,从欠采样 TOF-MRA 中进行高质量重建是深度学习的一个重要研究课题。然而,大多数现有的深度学习工作都需要匹配的参考数据进行监督训练,而这些数据通常很难获得。通过从最优传输理论扩展最近的循环生成对抗网络理论理解,我们在这里提出了一种新的两阶段无监督深度学习方法,该方法由沿冠状面的多线圈重建网络和沿矢状面的多平面细化网络组成。具体来说,第一个网络在均方根和(SSoS)域中进行训练,以实现高质量的平行图像重建,而第二个细化网络旨在使用双头投影鉴别器有效地学习高激活血流的特征。广泛的实验表明,无需匹配参考的学习过程优于基于压缩感知(CS)的最新方法的性能,并提供与监督学习方法相当甚至更好的结果。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验