Suppr超能文献

预测经皮冠状动脉介入治疗(PCI)或体外循环(CPB)手术后患者发生急性肾损伤的风险:列线图预测模型的建立与评估。

Predicting the Risk of Acute Kidney Injury in Patients After Percutaneous Coronary Intervention (PCI) or Cardiopulmonary Bypass (CPB) Surgery: Development and Assessment of a Nomogram Prediction Model.

机构信息

Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, Shanxi, China (mainland).

出版信息

Med Sci Monit. 2021 Apr 25;27:e929791. doi: 10.12659/MSM.929791.

Abstract

BACKGROUND We sought to create a model that incorporated ultrasound examinations to predict the risk of acute kidney injury (AKI) after percutaneous coronary intervention (PCI) or cardiopulmonary bypass (CPB) surgery. MATERIAL AND METHODS A total of 292 patients with AKI after PCI or CPB surgery were enrolled for the study. Afterwards, treatment-related information, including data pertaining to ultrasound examination, was collected. A random forest model and multivariate logistic regression analysis were then used to establish a predictive model for the risk of AKI. Finally, the predictive quality and clinical utility of the model were assessed using calibration plots, receiver-operating characteristic curve, C-index, and decision curve analysis. RESULTS Predictive factors were screened and the model was established with a C-index of 0.955 in the overall sample set. Additionally, an area under the curve of 0.967 was obtained in the training group. Moreover, decision curve analysis also revealed that the prediction model had good clinical applicability. CONCLUSIONS The prediction model was efficient in predicting the risk of AKI by incorporating ultrasound examinations and a number of factors. Such included operation methods, age, congestive heart failure, body mass index, heart rate, white blood cell count, platelet count, hemoglobin, uric acid, and peak intensity (kidney cortex as well as kidney medulla).

摘要

背景

我们旨在创建一个模型,将超声检查纳入其中,以预测经皮冠状动脉介入治疗(PCI)或体外循环(CPB)手术后发生急性肾损伤(AKI)的风险。

材料与方法

共纳入 292 例 PCI 或 CPB 手术后发生 AKI 的患者进行研究。随后,收集与治疗相关的信息,包括超声检查数据。然后,使用随机森林模型和多变量逻辑回归分析建立 AKI 风险的预测模型。最后,通过校准图、接收者操作特征曲线、C 指数和决策曲线分析评估模型的预测质量和临床实用性。

结果

筛选出预测因素,并在总样本集中建立了 C 指数为 0.955 的模型。此外,在训练组中获得了 0.967 的曲线下面积。此外,决策曲线分析还表明该预测模型具有良好的临床适用性。

结论

该预测模型通过纳入超声检查和多个因素,有效地预测了 AKI 的风险。这些因素包括手术方法、年龄、充血性心力衰竭、体重指数、心率、白细胞计数、血小板计数、血红蛋白、尿酸和峰值强度(肾皮质和肾髓质)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/f29a/8083792/aea5995baa50/medscimonit-27-e929791-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验