College of Medicine, University of Arkansas for Medical Sciences, Little Rock, Arkansas.
Mercy Hospital, Fort Smith, Arkansas.
Infect Control Hosp Epidemiol. 2022 Mar;43(3):291-297. doi: 10.1017/ice.2021.111. Epub 2021 Apr 26.
To determine patient-specific risk factors and clinical outcomes associated with contaminated blood cultures.
A single-center, retrospective case-control risk factor and clinical outcome analysis performed on inpatients with blood cultures collected in the emergency department, 2014-2018. Patients with contaminated blood cultures (cases) were compared to patients with negative blood cultures (controls).
A 509-bed tertiary-care university hospital.
Risk factors independently associated with blood-culture contamination were determined using multivariable logistic regression. The impacts of contamination on clinical outcomes were assessed using linear regression, logistic regression, and generalized linear model with γ log link.
Of 13,782 blood cultures, 1,504 (10.9%) true positives were excluded, leaving 1,012 (7.3%) cases and 11,266 (81.7%) controls. The following factors were independently associated with blood-culture contamination: increasing age (adjusted odds ratio [aOR], 1.01; 95% confidence interval [CI], 1.01-1.01), black race (aOR, 1.32; 95% CI, 1.15-1.51), increased body mass index (BMI; aOR, 1.01; 95% CI, 1.00-1.02), chronic obstructive pulmonary disease (aOR, 1.16; 95% CI, 1.02-1.33), paralysis (aOR 1.64; 95% CI, 1.26-2.14) and sepsis plus shock (aOR, 1.26; 95% CI, 1.07-1.49). After controlling for age, race, BMI, and sepsis, blood-culture contamination increased length of stay (LOS; β = 1.24 ± 0.24; P < .0001), length of antibiotic treatment (LOT; β = 1.01 ± 0.20; P < .001), hospital charges (β = 0.22 ± 0.03; P < .0001), acute kidney injury (AKI; aOR, 1.60; 95% CI, 1.40-1.83), echocardiogram orders (aOR, 1.51; 95% CI, 1.30-1.75) and in-hospital mortality (aOR, 1.69; 95% CI, 1.31-2.16).
These unique risk factors identify high-risk individuals for blood-culture contamination. After controlling for confounders, contamination significantly increased LOS, LOT, hospital charges, AKI, echocardiograms, and in-hospital mortality.
确定与污染血培养相关的患者特异性危险因素和临床结局。
在 2014 年至 2018 年间,对在急诊采集的血培养住院患者进行了单中心、回顾性病例对照危险因素和临床结局分析。将污染血培养的患者(病例)与阴性血培养的患者(对照)进行比较。
一家拥有 509 张床位的三级保健大学医院。
使用多变量逻辑回归确定与血培养污染独立相关的危险因素。使用线性回归、逻辑回归和具有γ对数链接的广义线性模型评估污染对临床结局的影响。
在 13782 份血培养中,排除了 1504 份(10.9%)真阳性血培养,留下 1012 份(7.3%)病例和 11266 份(81.7%)对照。以下因素与血培养污染独立相关:年龄增加(调整后的优势比[aOR],1.01;95%置信区间[CI],1.01-1.01)、黑种人(aOR,1.32;95%CI,1.15-1.51)、体重指数(BMI)增加(aOR,1.01;95%CI,1.00-1.02)、慢性阻塞性肺疾病(aOR,1.16;95%CI,1.02-1.33)、瘫痪(aOR 1.64;95%CI,1.26-2.14)和脓毒症伴休克(aOR,1.26;95%CI,1.07-1.49)。在控制年龄、种族、BMI 和脓毒症后,血培养污染增加了住院时间(LOS;β=1.24±0.24;P<0.0001)、抗生素治疗时间(LOT;β=1.01±0.20;P<0.001)、医院费用(β=0.22±0.03;P<0.0001)、急性肾损伤(AKI;aOR,1.60;95%CI,1.40-1.83)、超声心动图检查(aOR,1.51;95%CI,1.30-1.75)和院内死亡率(aOR,1.69;95%CI,1.31-2.16)。
这些独特的危险因素可以识别出易发生血培养污染的高危人群。在控制混杂因素后,污染显著增加了 LOS、LOT、医院费用、AKI、超声心动图和院内死亡率。