Suppr超能文献

社论评论:使用机器学习进行个性化髋关节镜手术结果预测——未来已来。

Editorial Commentary: Personalized Hip Arthroscopy Outcome Prediction Using Machine Learning-The Future Is Here.

出版信息

Arthroscopy. 2021 May;37(5):1498-1502. doi: 10.1016/j.arthro.2021.02.032.

Abstract

Machine learning and artificial intelligence are increasingly used in modern health care, including arthroscopic and related surgery. Multiple high-quality, Level I evidence, randomized, controlled investigations have recently shown the ability of hip arthroscopy to successfully treat femoroacetabular impingement syndrome and labral tears. Contemporary hip preservation practice strives to continually refine and improve the value of care provision. Multiple single-center and multicenter prospective registries continue to grow as part of both United States-based and international hip preservation-specific networks and collaborations. The ability to predict postoperative patient-reported outcomes preoperatively holds great promise with machine learning. Machine learning requires massive amounts of data, which can easily be generated from electronic medical records and both patient- and clinician-generated questionnaires. On top of text-based data, imaging (e.g., plain radiographs, computed tomography, and magnetic resonance imaging) can be rapidly interpreted and used in both clinical practice and research. Formidable computational power is also required, using different advanced statistical methods and algorithms to generate models with the ability to predict individual patient outcomes. Efficient integration of machine learning into hip arthroscopy practice can reduce physicians' "busywork" of data collection and analysis. This can only improve the value of the patient experience, because surgeons have more time for shared decision making, with empathy, compassion, and humanity counterintuitively returning to medicine.

摘要

机器学习和人工智能在现代医疗保健中得到了越来越多的应用,包括关节镜和相关手术。最近,多项高质量、一级证据、随机对照研究表明髋关节镜能够成功治疗股骨髋臼撞击综合征和盂唇撕裂。当代髋关节保护实践努力不断完善和提高护理服务的价值。随着美国和国际髋关节保护特定网络和合作的发展,越来越多的单中心和多中心前瞻性登记研究不断增加。在机器学习中,术前预测患者报告的术后结果具有巨大的潜力。机器学习需要大量的数据,这些数据可以很容易地从电子病历和患者及临床医生生成的问卷中生成。除了基于文本的数据,影像学(如 X 线平片、计算机断层扫描和磁共振成像)也可以在临床实践和研究中快速解读和使用。还需要强大的计算能力,使用不同的高级统计方法和算法来生成能够预测个体患者结果的模型。高效地将机器学习整合到髋关节镜实践中可以减少医生在数据收集和分析方面的“繁琐工作”。这只会提高患者体验的价值,因为外科医生有更多的时间进行同理心、同情心和人性化的共同决策,这与医学的直觉背道而驰。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验