Suppr超能文献

腰果副产品制成的薄膜:腰果胶和来自腰果苹果汁的细菌纤维素。

Films from cashew byproducts: cashew gum and bacterial cellulose from cashew apple juice.

作者信息

Silva Sarah Maria Frota, Ribeiro Hálisson Lucas, Mattos Adriano Lincoln Albuquerque, Borges Maria de Fátima, Rosa Morsyleide de Freitas, de Azeredo Henriette Monteiro Cordeiro

机构信息

Chemical Engineering Department, Federal University of Ceara, Campus Pici, Fortaleza, CE 60455-760 Brazil.

Embrapa Agroindústria Tropical, R. Dra. Sara Mesquita, 2270, Pici, Fortaleza, CE 60511-110 Brazil.

出版信息

J Food Sci Technol. 2021 May;58(5):1979-1986. doi: 10.1007/s13197-020-04709-7. Epub 2020 Aug 17.

Abstract

ABSTRACT

Cashew is a major crop in several tropical countries. Its cultivation is mostly aimed to the production of cashew nuts, whereas its byproducts (including cashew tree gum and cashew apples) are underutilized. In this study, cashew tree gum (CG) has been combined to nanofibrillated bacterial cellulose (NFBC) produced from cashew apple juice, at different ratios (from CG-only to NFBC-only), to produce edible films. While the CG-only dispersion (at 1 wt%) behaved as a quasi-Newtonian fluid, the addition of NFBC provided a shear-thinning behavior, making the dispersions easier to process, especially to cast. Moreover, the films containing increasing NFBC contents exhibited better physico-mechanical performance. When compared to the CG-only film, the films containing at least 25% NFBC presented remarkably higher strength and modulus (even similar to some conventional petroleum-derived polymers), lower water vapor permeability (WVP), and lower water solubility, although at the expense of lower elongation and higher opacity values. The combined use of both polysaccharides was demonstrated to be useful to overcome the limitations of both CG-only films (very low viscosity, poor tensile properties and very high WVP) and NFBC-only films (very high viscosity, making the dispersions difficult to mix and spread). Moreover, the use of different NFBC/CG ratios allow properties to be tuned to meet specific demands for different food packaging or coating purposes.

摘要

摘要

腰果是几个热带国家的主要作物。其种植主要旨在生产腰果,而其副产品(包括腰果树脂和腰果苹果)未得到充分利用。在本研究中,将腰果树脂(CG)与由腰果苹果汁生产的纳米纤化细菌纤维素(NFBC)以不同比例(从仅含CG到仅含NFBC)混合,以生产可食用薄膜。仅含CG的分散体(1 wt%)表现为准牛顿流体,而添加NFBC则呈现剪切变稀行为,使分散体更易于加工,尤其是流延。此外,NFBC含量增加的薄膜表现出更好的物理机械性能。与仅含CG的薄膜相比,至少含有25% NFBC的薄膜具有显著更高的强度和模量(甚至类似于一些传统的石油衍生聚合物)、更低的水蒸气透过率(WVP)和更低的水溶性,尽管牺牲了较低的伸长率和较高的不透明度值。结果表明,两种多糖的联合使用有助于克服仅含CG薄膜(极低粘度、较差的拉伸性能和非常高的WVP)和仅含NFBC薄膜(非常高的粘度,使分散体难以混合和铺展)的局限性。此外,使用不同的NFBC/CG比例可调节性能,以满足不同食品包装或涂层用途的特定需求。

相似文献

1
Films from cashew byproducts: cashew gum and bacterial cellulose from cashew apple juice.
J Food Sci Technol. 2021 May;58(5):1979-1986. doi: 10.1007/s13197-020-04709-7. Epub 2020 Aug 17.
2
From cashew byproducts to biodegradable active materials: Bacterial cellulose-lignin-cellulose nanocrystal nanocomposite films.
Int J Biol Macromol. 2020 Oct 15;161:1337-1345. doi: 10.1016/j.ijbiomac.2020.07.269. Epub 2020 Aug 8.
3
Nanofibrillated bacterial cellulose and pectin edible films added with fruit purees.
Carbohydr Polym. 2018 Sep 15;196:27-32. doi: 10.1016/j.carbpol.2018.05.017. Epub 2018 May 7.
4
Antidiarrheal activity of cashew GUM, a complex heteropolysaccharide extracted from exudate of Anacardium occidentale L. in rodents.
J Ethnopharmacol. 2015 Nov 4;174:299-307. doi: 10.1016/j.jep.2015.08.020. Epub 2015 Aug 20.
6
Effect of dynamic high pressure on technological properties of cashew tree gum (Anacardium occidentale L.).
Carbohydr Polym. 2015 Sep 20;129:187-93. doi: 10.1016/j.carbpol.2015.04.052. Epub 2015 May 2.
8
Chemical composition and bioactive compounds of cashew () apple juice and bagasse from Colombian varieties.
Heliyon. 2022 May 23;8(5):e09528. doi: 10.1016/j.heliyon.2022.e09528. eCollection 2022 May.
9
Anti-inflammatory and wound healing potential of cashew apple juice (Anacardium occidentale L.) in mice.
Exp Biol Med (Maywood). 2015 Dec;240(12):1648-55. doi: 10.1177/1535370215576299. Epub 2015 Mar 27.
10
Tannin Removal of Cashew Apple Juice by Powdered Gelatin Treatment and Its Utilization in Bacterial Cellulose Production.
Appl Biochem Biotechnol. 2024 Mar;196(3):1435-1449. doi: 10.1007/s12010-023-04632-5. Epub 2023 Jul 7.

引用本文的文献

1
Novel Approaches in Production and Application of Bacterial Cellulose in Food Industries.
Adv Biochem Eng Biotechnol. 2025;191:249-282. doi: 10.1007/10_2025_285.
2
Biotechnology in Food Packaging Using Bacterial Cellulose.
Foods. 2024 Oct 20;13(20):3327. doi: 10.3390/foods13203327.
3
On the Unique Morphology and Elastic Properties of Multi-Jet Electrospun Cashew Gum-Based Fiber Mats.
Polymers (Basel). 2024 May 10;16(10):1355. doi: 10.3390/polym16101355.
4
Enhanced production of bacterial cellulose employing banana peel as a cost-effective nutrient resource.
Braz J Microbiol. 2023 Dec;54(4):2745-2753. doi: 10.1007/s42770-023-01151-7. Epub 2023 Oct 23.
5
Tannin Removal of Cashew Apple Juice by Powdered Gelatin Treatment and Its Utilization in Bacterial Cellulose Production.
Appl Biochem Biotechnol. 2024 Mar;196(3):1435-1449. doi: 10.1007/s12010-023-04632-5. Epub 2023 Jul 7.
6
7
Efficient production of bacterial cellulose based composites using zein protein extracted from corn gluten meal.
J Food Sci Technol. 2023 Mar;60(3):1026-1035. doi: 10.1007/s13197-022-05443-y. Epub 2022 May 12.
9
Bacterial nanocellulose: engineering, production, and applications.
Bioengineered. 2021 Dec;12(2):11463-11483. doi: 10.1080/21655979.2021.2009753.

本文引用的文献

1
Antibacterial application of natural and carboxymethylated cashew gum-based silver nanoparticles produced by microwave-assisted synthesis.
Carbohydr Polym. 2020 Aug 1;241:115260. doi: 10.1016/j.carbpol.2019.115260. Epub 2019 Sep 14.
2
The Next Generation of Sustainable Food Packaging to Preserve Our Environment in a Circular Economy Context.
Front Nutr. 2018 Dec 4;5:121. doi: 10.3389/fnut.2018.00121. eCollection 2018.
3
Cellulose defibrillation and functionalization by plasma in liquid treatment.
Sci Rep. 2018 Oct 19;8(1):15473. doi: 10.1038/s41598-018-33687-2.
4
Nano-bacterial cellulose/soy protein isolate complex gel as fat substitutes in ice cream model.
Carbohydr Polym. 2018 Oct 15;198:620-630. doi: 10.1016/j.carbpol.2018.06.078. Epub 2018 Jun 18.
5
Development and characterization of agar-based edible films reinforced with nano-bacterial cellulose.
Int J Biol Macromol. 2018 Oct 15;118(Pt A):722-730. doi: 10.1016/j.ijbiomac.2018.06.089. Epub 2018 Jun 23.
6
Nanofibrillated bacterial cellulose and pectin edible films added with fruit purees.
Carbohydr Polym. 2018 Sep 15;196:27-32. doi: 10.1016/j.carbpol.2018.05.017. Epub 2018 May 7.
7
Bacterial cellulose nanofibers as reinforce in edible fish myofibrillar protein nanocomposite films.
Int J Biol Macromol. 2018 Oct 1;117:742-751. doi: 10.1016/j.ijbiomac.2018.05.038. Epub 2018 May 17.
8
Cost-effective production of bacterial cellulose using acidic food industry by-products.
Braz J Microbiol. 2018 Nov;49 Suppl 1(Suppl 1):151-159. doi: 10.1016/j.bjm.2017.12.012. Epub 2018 Mar 13.
9
Increased production of bacterial cellulose as starting point for scaled-up applications.
Appl Microbiol Biotechnol. 2017 Nov;101(22):8115-8127. doi: 10.1007/s00253-017-8539-3. Epub 2017 Sep 30.
10
Current Progress in Rheology of Cellulose Nanofibril Suspensions.
Biomacromolecules. 2016 Jul 11;17(7):2311-20. doi: 10.1021/acs.biomac.6b00668. Epub 2016 Jun 28.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验