Underhill Suzanne M, Amara Susan G
National Institute of Mental Health, National Institutes of Health (NIH), Bethesda, MD, United States.
Front Cell Neurosci. 2021 Apr 9;15:662216. doi: 10.3389/fncel.2021.662216. eCollection 2021.
The dopamine transporter (DAT) clears neurotransmitters from the extracellular space and serves as an important regulator of signal amplitude and duration at sites of dopamine release. Several different intracellular signaling pathways have been observed to modulate DAT activity through the regulation of the trafficking of the carriers to and from the cell surface. Acute activation of protein kinase C (PKC) by phorbol esters facilitates clathrin-dependent internalization of the DAT in a variety of model systems; however, the physiological stimuli and cell-surface receptor systems that activate PKC and regulate the DAT in dopamine neurons remain elusive. We report here that stimulation of M/M muscarinic receptors in midbrain cultures decreases the ability of dopamine neurons to transport dopamine through DAT. Application of the cholinomimetic drug carbachol leads to a decrease in DAT activity in primary cultures while the M/M-specific antagonist, pirenzepine, blocks these effects. The M antagonist, DAU 5884, does not affect, but a positive modulator of M, VU 0238429, enhances the loss of DAT function in response to carbachol and acetylcholine. These data implicate M/M receptors on dopamine neurons in the modulation of DAT function. Bisindolylmaleimide, a PKC inhibitor, blocks the effects of carbachol stimulation on dopamine uptake, supporting a role for PKC in muscarinic receptor-mediated DAT internalization. Furthermore, as shown previously for PKC-induced internalization, downregulation of the DAT is dependent on both clathrin and dynamin. A G-specific inhibitor peptide also blocks the effects of carbachol on DAT in primary cultures, confirming G as the G-protein that couples M/M receptors to PKC activation in these cells. In acute midbrain slices, biotinylation of cell-surface proteins revealed the loss of dopamine transport mediated by muscarinic receptor stimulation was, indeed, due to loss of membrane expression of the DAT in endogenous tissue. These data indicate that stimulation of cholinergic pathways can lead to modulation of dopamine through internalization of the DAT.
多巴胺转运体(DAT)可清除细胞外空间的神经递质,并作为多巴胺释放部位信号幅度和持续时间的重要调节器。已观察到几种不同的细胞内信号通路可通过调节载体往返细胞表面的运输来调节DAT活性。佛波酯对蛋白激酶C(PKC)的急性激活促进了DAT在多种模型系统中的网格蛋白依赖性内化;然而,激活PKC并调节多巴胺能神经元中DAT的生理刺激和细胞表面受体系统仍然难以捉摸。我们在此报告,中脑培养物中M/M毒蕈碱受体的刺激会降低多巴胺能神经元通过DAT转运多巴胺的能力。拟胆碱药物卡巴胆碱的应用导致原代培养物中DAT活性降低,而M/M特异性拮抗剂哌仑西平可阻断这些作用。M拮抗剂DAU 5884不产生影响,但M的正向调节剂VU 0238429会增强DAT功能因卡巴胆碱和乙酰胆碱而丧失的程度。这些数据表明多巴胺能神经元上的M/M受体参与了DAT功能的调节。双吲哚马来酰胺是一种PKC抑制剂,可阻断卡巴胆碱刺激对多巴胺摄取的影响,支持PKC在毒蕈碱受体介导的DAT内化中的作用。此外,如先前对PKC诱导的内化所示,DAT的下调依赖于网格蛋白和发动蛋白。一种G特异性抑制剂肽也可阻断卡巴胆碱对原代培养物中DAT的影响,证实G是将M/M受体与这些细胞中PKC激活偶联的G蛋白。在急性中脑切片中,细胞表面蛋白的生物素化显示,毒蕈碱受体刺激介导的多巴胺转运丧失确实是由于内源性组织中DAT膜表达的丧失。这些数据表明,胆碱能通路的刺激可通过DAT的内化导致多巴胺的调节。