Suppr超能文献

一种使用机器学习预测新冠病毒疾病患者死亡风险的早期预警工具。

An Early Warning Tool for Predicting Mortality Risk of COVID-19 Patients Using Machine Learning.

作者信息

Chowdhury Muhammad E H, Rahman Tawsifur, Khandakar Amith, Al-Madeed Somaya, Zughaier Susu M, Doi Suhail A R, Hassen Hanadi, Islam Mohammad T

机构信息

Department of Electrical Engineering, Qatar University, 2713 Doha, Qatar.

Department of Biomedical Physics & Technology, University of Dhaka, 1000 Dhaka, Bangladesh.

出版信息

Cognit Comput. 2021 Apr 21:1-16. doi: 10.1007/s12559-020-09812-7.

Abstract

COVID-19 pandemic has created an extreme pressure on the global healthcare services. Fast, reliable, and early clinical assessment of the severity of the disease can help in allocating and prioritizing resources to reduce mortality. In order to study the important blood biomarkers for predicting disease mortality, a retrospective study was conducted on a dataset made public by Yan et al. in [1] of 375 COVID-19 positive patients admitted to Tongji Hospital (China) from January 10 to February 18, 2020. Demographic and clinical characteristics and patient outcomes were investigated using machine learning tools to identify key biomarkers to predict the mortality of individual patient. A nomogram was developed for predicting the mortality risk among COVID-19 patients. Lactate dehydrogenase, neutrophils (%), lymphocyte (%), high-sensitivity C-reactive protein, and age (LNLCA)-acquired at hospital admission-were identified as key predictors of death by multi-tree XGBoost model. The area under curve (AUC) of the nomogram for the derivation and validation cohort were 0.961 and 0.991, respectively. An integrated score (LNLCA) was calculated with the corresponding death probability. COVID-19 patients were divided into three subgroups: low-, moderate-, and high-risk groups using LNLCA cutoff values of 10.4 and 12.65 with the death probability less than 5%, 5-50%, and above 50%, respectively. The prognostic model, nomogram, and LNLCA score can help in early detection of high mortality risk of COVID-19 patients, which will help doctors to improve the management of patient stratification.

摘要

新冠疫情给全球医疗服务带来了巨大压力。对疾病严重程度进行快速、可靠且早期的临床评估有助于合理分配资源并确定优先顺序,从而降低死亡率。为了研究预测疾病死亡率的重要血液生物标志物,我们对颜等人在[1]中公开的数据集进行了一项回顾性研究,该数据集包含了2020年1月10日至2月18日入住同济医院(中国)的375例新冠阳性患者。我们使用机器学习工具调查了人口统计学和临床特征以及患者预后情况,以确定预测个体患者死亡率的关键生物标志物。我们开发了一种列线图来预测新冠患者的死亡风险。乳酸脱氢酶、中性粒细胞(%)、淋巴细胞(%)、高敏C反应蛋白以及入院时测得的年龄(LNLCA)被多树XGBoost模型确定为死亡的关键预测因素。该列线图在推导队列和验证队列中的曲线下面积(AUC)分别为0.961和0.991。我们根据相应的死亡概率计算了一个综合评分(LNLCA)。利用LNLCA临界值10.4和12.65将新冠患者分为三个亚组:低风险组、中风险组和高风险组,其死亡概率分别小于5%、5%-50%和高于50%。该预后模型、列线图和LNLCA评分有助于早期发现新冠患者的高死亡风险,这将有助于医生改善患者分层管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1d45/8058759/6f97fee7c064/12559_2020_9812_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验