Suppr超能文献

利用血液生物标志物和机器学习技术预测COVID-19严重程度的死亡率预测

Mortality Prediction Utilizing Blood Biomarkers to Predict the Severity of COVID-19 Using Machine Learning Technique.

作者信息

Rahman Tawsifur, Al-Ishaq Fajer A, Al-Mohannadi Fatima S, Mubarak Reem S, Al-Hitmi Maryam H, Islam Khandaker Reajul, Khandakar Amith, Hssain Ali Ait, Al-Madeed Somaya, Zughaier Susu M, Chowdhury Muhammad E H

机构信息

Department of Electrical Engineering, Qatar University, Doha 2713, Qatar.

Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha 2713, Qatar.

出版信息

Diagnostics (Basel). 2021 Aug 31;11(9):1582. doi: 10.3390/diagnostics11091582.

Abstract

Healthcare researchers have been working on mortality prediction for COVID-19 patients with differing levels of severity. A rapid and reliable clinical evaluation of disease intensity will assist in the allocation and prioritization of mortality mitigation resources. The novelty of the work proposed in this paper is an early prediction model of high mortality risk for both COVID-19 and non-COVID-19 patients, which provides state-of-the-art performance, in an external validation cohort from a different population. Retrospective research was performed on two separate hospital datasets from two different countries for model development and validation. In the first dataset, COVID-19 and non-COVID-19 patients were admitted to the emergency department in Boston (24 March 2020 to 30 April 2020), and in the second dataset, 375 COVID-19 patients were admitted to Tongji Hospital in China (10 January 2020 to 18 February 2020). The key parameters to predict the risk of mortality for COVID-19 and non-COVID-19 patients were identified and a nomogram-based scoring technique was developed using the top-ranked five parameters. Age, Lymphocyte count, D-dimer, CRP, and Creatinine (ALDCC), information acquired at hospital admission, were identified by the logistic regression model as the primary predictors of hospital death. For the development cohort, and internal and external validation cohorts, the area under the curves (AUCs) were 0.987, 0.999, and 0.992, respectively. All the patients are categorized into three groups using ALDCC score and death probability: Low (probability < 5%), Moderate (5% < probability < 50%), and High (probability > 50%) risk groups. The prognostic model, nomogram, and ALDCC score will be able to assist in the early identification of both COVID-19 and non-COVID-19 patients with high mortality risk, helping physicians to improve patient management.

摘要

医疗保健研究人员一直在致力于对不同严重程度的新冠肺炎患者进行死亡率预测。对疾病强度进行快速可靠的临床评估将有助于死亡缓解资源的分配和优先级确定。本文提出的工作的新颖之处在于,针对新冠肺炎患者和非新冠肺炎患者构建了一个高死亡风险早期预测模型,该模型在来自不同人群的外部验证队列中展现出了一流的性能。研究人员对来自两个不同国家的两个独立医院数据集进行了回顾性研究,用于模型开发和验证。在第一个数据集中,新冠肺炎患者和非新冠肺炎患者于2020年3月24日至2020年4月30日期间被收治于波士顿的急诊科;在第二个数据集中,375名新冠肺炎患者于2020年1月10日至2020年2月18日期间被收治于中国的同济医院。确定了预测新冠肺炎患者和非新冠肺炎患者死亡风险的关键参数,并使用排名靠前的五个参数开发了基于列线图的评分技术。通过逻辑回归模型确定,入院时获取的年龄、淋巴细胞计数、D - 二聚体、C反应蛋白和肌酐(ALDCC)信息是医院死亡的主要预测因素。对于开发队列以及内部和外部验证队列,曲线下面积(AUC)分别为0.987、0.999和0.992。使用ALDCC评分和死亡概率将所有患者分为三组:低风险组(概率 < 5%)、中风险组(5% < 概率 < 50%)和高风险组(概率 > 50%)。该预后模型、列线图和ALDCC评分将能够帮助早期识别出具有高死亡风险的新冠肺炎患者和非新冠肺炎患者,帮助医生改善患者管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9734/8469072/8fe909bb0b7d/diagnostics-11-01582-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验