Suppr超能文献

作为抗流感药物的神经氨酸酶抑制剂的定量构效关系研究

QSAR Studies on Neuraminidase Inhibitors as Anti-influenza Agents.

作者信息

Veerasamy Ravichandran, Rajak Harish

机构信息

AIMST University Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Kedah, Malaysia

Guru Ghasidas University SLT Institute of Pharmaceutical Sciences, Bilaspur, India

出版信息

Turk J Pharm Sci. 2021 Apr 20;18(2):151-156. doi: 10.4274/tjps.galenos.2020.45556.

Abstract

OBJECTIVES

The present study aimed to establish significant and validated quantitative structure-activity relationship (QSAR) models for neuraminidase inhibitors and correlate their physicochemical, steric, and electrostatic properties with their anti-influenza activity.

MATERIALS AND METHODS

We have developed and validated 2D and 3D QSAR models by using multiple linear regression, partial least square regression, and k-nearest neighbor-molecular field analysis methods.

RESULTS

2D QSAR models had q: 0.950 and pred_r: 0.877 and 3D QSAR models had q: 0.899 and pred_r: 0.957. These results showed that the models werere predictive.

CONCLUSION

Parameters such as hydrogen count and hydrophilicity were involved in 2D QSAR models. The 3D QSAR study revealed that steric and hydrophobic descriptors were negatively contributed to neuraminidase inhibitory activity. The results of this study could be used as platform for design of better anti-influenza drugs.

摘要

目的

本研究旨在建立针对神经氨酸酶抑制剂的有效且经过验证的定量构效关系(QSAR)模型,并将其物理化学、空间和静电性质与其抗流感活性相关联。

材料与方法

我们使用多元线性回归、偏最小二乘回归和k近邻分子场分析方法开发并验证了二维和三维QSAR模型。

结果

二维QSAR模型的q值为0.950,预测r值为0.877;三维QSAR模型的q值为0.899,预测r值为0.957。这些结果表明模型具有预测性。

结论

二维QSAR模型涉及氢原子数和亲水性等参数。三维QSAR研究表明,空间和疏水描述符对神经氨酸酶抑制活性有负向贡献。本研究结果可作为设计更好的抗流感药物的平台。

相似文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验