School of Geography, Nanjing Normal University, Nanjing, 210023, China.
School of Environment, Nanjing Normal University, Nanjing, 210023, China.
Environ Pollut. 2021 Sep 1;284:117176. doi: 10.1016/j.envpol.2021.117176. Epub 2021 Apr 17.
Although crop residue return increases upland soil emissions of nitrous oxide (NO), a potent greenhouse gas, the mechanisms responsible for the increase remain unclear. Here, we investigate NO emission pathways, gross nitrogen (N)-cycling rates, and associated N-cycling gene abundances in an upland soil following the addition of various organic material under aerobic incubation using a combination of N tracing technique, acetylene (CH) inhibition, and real-time PCR (qPCR) methods. Increased total NO emissions following organic material amendment was attributed to both increased nitrification-derived NO emissions, following increased ammonia-oxidizing bacteria (AOB)-amoA abundance, and denitrification-derived NO emissions, following increased nirS and decreased nosZ abundance. Increasing plant residue carbon (C)/N ratio decreased total NO emissions by decreasing the contribution of denitrification to NO emissions, potentially due to higher proportions of denitrified N emitted as NO than nitrified N emitted as NO. We further propose a novel conceptual framework for organic material input effects on denitrification-derived NO emissions based on the decomposable characteristics of the added organic material. For slowly decomposing organic materials (e.g., plant residue) with insufficient available C, NO-N immobilization surpassed denitrification, resulting in gradual decrease in denitrification-derived NO emissions with an increase in mineralization of plant residue C losses. In contrast, available C provided by readily available C sources (e.g., glucose) seemed sufficient to support the co-occurrence of NO-N immobilization and denitrification. Overall, for the first time, we offer a microbial process perspective of NO emissions following organic material input. The findings could facilitate the improvement of process-orientated models of NO emissions and the formulation of appropriate NO mitigation strategies for crop residue-amended soils.
尽管作物残茬归还会增加旱地土壤一氧化二氮(N2O)的排放,N2O 是一种强效温室气体,但导致排放增加的机制仍不清楚。在这里,我们采用氮示踪技术、乙炔(CH)抑制和实时 PCR(qPCR)方法,在有氧培养条件下,研究了添加各种有机物质后,旱地土壤中一氧化二氮排放途径、总氮(N)循环率和相关 N 循环基因丰度。有机物质添加后总一氧化二氮排放量的增加归因于氨氧化细菌(AOB)amoA 丰度增加导致硝化衍生的一氧化二氮排放增加,以及nirS 增加和 nosZ 减少导致反硝化衍生的一氧化二氮排放增加。增加植物残体碳(C)/N 比通过降低反硝化对一氧化二氮排放的贡献来减少总一氧化二氮排放,这可能是由于反硝化脱氮产生的 NO 比例高于硝化脱氮产生的 NO。我们进一步提出了一个基于添加有机物质可分解特性的有机物质输入对反硝化衍生的一氧化二氮排放影响的新概念框架。对于可分解缓慢的有机物质(例如植物残体)和不足的可用 C,NO-N 固定超过了反硝化作用,导致随着植物残体 C 损失矿化的增加,反硝化衍生的一氧化二氮排放逐渐减少。相比之下,易于利用的 C 源(例如葡萄糖)提供的可用 C 似乎足以支持 NO-N 固定和反硝化作用的同时发生。总的来说,这是首次从微生物过程的角度研究了有机物质输入后一氧化二氮的排放。这些发现可以促进基于过程的一氧化二氮排放模型的改进,并为添加作物残茬的土壤制定适当的一氧化二氮减排策略。