Suppr超能文献

评估临床预测指标的技术考虑因素:以 MEWS 预测蓝色代码事件为例

Technical considerations for evaluating clinical prediction indices: a case study for predicting code blue events with MEWS.

机构信息

School of Nursing, Duke University, Durham, NC, United States of America.

Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, United States of America.

出版信息

Physiol Meas. 2021 Jun 17;42(5). doi: 10.1088/1361-6579/abfbb9.

Abstract

There have been many efforts to develop tools predictive of health deterioration in hospitalized patients, but comprehensive evaluation of their predictive ability is often lacking to guide implementation in clinical practice. In this work, we propose new techniques and metrics for evaluating the performance of predictive alert algorithms and illustrate the advantage of capturing the timeliness and the clinical burden of alerts through the example of the modified early warning score (MEWS) applied to the prediction of in-hospital code blue events.. Different implementations of MEWS were calculated from available physiological parameter measurements collected from the electronic health records of ICU adult patients. The performance of MEWS was evaluated using conventional and a set of non-conventional metrics and approaches that take into account the timeliness and practicality of alarms as well as the false alarm burden.. MEWS calculated using the worst-case measurement (i.e. values scoring 3 points in the MEWS definition) over 2 h intervals significantly reduced the false alarm rate by over 50% (from 0.19/h to 0.08/h) while maintaining similar sensitivity levels as MEWS calculated from raw measurements (∼80%). By considering a prediction horizon of 12 h preceding a code blue event, a significant improvement in the specificity (∼60%), the precision (∼155%), and the work-up to detection ratio (∼50%) could be achieved, at the cost of a relatively marginal decrease in sensitivity (∼10%).. Performance aspects pertaining to the timeliness and burden of alarms can aid in understanding the potential utility of a predictive alarm algorithm in clinical settings.

摘要

已经有许多努力来开发预测住院患者健康恶化的工具,但通常缺乏对其预测能力的综合评估,无法指导在临床实践中的实施。在这项工作中,我们提出了用于评估预测警报算法性能的新技术和指标,并通过应用于预测院内蓝色代码事件的改良早期预警评分(MEWS)示例,说明了通过捕获警报的及时性和临床负担来捕捉警报的及时性和临床负担的优势。从 ICU 成年患者的电子健康记录中收集的可用生理参数测量值计算了不同的 MEWS 实现。使用常规和一组非常规指标和方法评估了 MEWS 的性能,这些指标和方法考虑了警报的及时性和实用性以及误报负担。使用最坏情况下的测量值(即在 MEWS 定义中得分 3 分的测量值)计算 2 小时间隔的 MEWS 显著降低了误报率(从 0.19/小时降至 0.08/小时),同时保持了与原始测量值计算的 MEWS 相似的敏感性水平(约 80%)。通过考虑在蓝色代码事件前 12 小时的预测期,特异性(约 60%)、精度(约 155%)和检测前工作比率(约 50%)都有显著提高,而敏感性相对下降(约 10%)。与警报的及时性和负担有关的性能方面可以帮助理解预测警报算法在临床环境中的潜在效用。

相似文献

4

本文引用的文献

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验