Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland.
Institute for Chemical and Bioengineering, Department of Chemistry and Applied Biosciences, ETH Zurich, CH-8093 Zurich, Switzerland; Laboratory for Catalysis and Sustainable Chemistry, Paul Scherrer Institute, Villigen CH-5232, Switzerland;, Email:
Chimia (Aarau). 2021 Apr 28;75(4):305-310. doi: 10.2533/chimia.2021.305.
A scale-flexible process for the direct and selective oxidation of methane to primary oxygenates is of great interest, however, a commercially feasible approach has yet to be realized due to a number of challenges. Low product yields imposed by a well-established selectivity-conversion limit are particularly burdensome for direct methane-to-methanol chemistry. One strategy that has emerged to break out of this limit is the esterification of produced methanol to the more oxidation-resistant methyl ester. However, these methaneto-methyl-ester approaches still elude commercialization despite their unprecedented high yields. Herein, we outline some of the key barriers that hinder the commercial prospects of this otherwise promising route for highyield direct catalytic methane conversion, including extremely corrosive reagents, homogeneous catalysts, and inviable oxidants. We then highlight directions to address these challenges while maintaining the characteristic high performance of these systems. These discussions support the efficacy of product protection strategies for the direct, selective oxidation of methane and encourage future work in developing creative solutions to merge this promising chemistry with more practical industrial requirements.
一种可灵活调节的工艺,用于直接且选择性地将甲烷氧化为初级含氧化合物,这是一个非常有意义的研究方向。然而,由于存在一系列挑战,目前还没有找到一种可行的商业方法。对于直接将甲烷转化为甲醇的化学过程,由于选择性-转化率的限制,导致产物收率较低,这是一个特别大的难题。有一种策略可以突破这种限制,即将生成的甲醇酯化生成更耐氧化的甲酯。然而,尽管这些甲烷-甲酯方法具有前所未有的高收率,但它们仍然难以实现商业化。在此,我们概述了一些关键的障碍,这些障碍阻碍了这条具有高产量的直接催化甲烷转化的有前途的路线的商业化前景,包括腐蚀性极强的试剂、均相催化剂和不可行的氧化剂。然后,我们强调了在保持这些体系的高催化性能的同时,解决这些挑战的方向。这些讨论支持了产品保护策略在甲烷直接、选择性氧化中的有效性,并鼓励未来开展创造性的工作,将这一有前景的化学转化与更实际的工业需求相结合。