Suppr超能文献

四氢生物蝶呤(BH)缺乏症的分子和代谢基础。

Molecular and metabolic bases of tetrahydrobiopterin (BH) deficiencies.

机构信息

Center for Child and Adolescent Medicine, Dietmar-Hopp Metabolic Center, Division 1, Heidelberg, Germany.

Division of Metabolism, University Children's Hospital Zürich, Zürich, Switzerland.

出版信息

Mol Genet Metab. 2021 Jun;133(2):123-136. doi: 10.1016/j.ymgme.2021.04.003. Epub 2021 Apr 19.

Abstract

Tetrahydrobiopterin (BH) deficiency is caused by genetic variants in the three genes involved in de novo cofactor biosynthesis, GTP cyclohydrolase I (GTPCH/GCH1), 6-pyruvoyl-tetrahydropterin synthase (PTPS/PTS), sepiapterin reductase (SR/SPR), and the two genes involved in cofactor recycling, carbinolamine-4α-dehydratase (PCD/PCBD1) and dihydropteridine reductase (DHPR/QDPR). Dysfunction in BH metabolism leads to reduced cofactor levels and may result in systemic hyperphenylalaninemia and/or neurological sequelae due to secondary deficiency in monoamine neurotransmitters in the central nervous system. More than 1100 patients with BH deficiency and 800 different allelic variants distributed throughout the individual genes are tabulated in database of pediatric neurotransmitter disorders PNDdb. Here we provide an update on the molecular-genetic analysis and structural considerations of these variants, including the clinical courses of the genotypes. From a total of 324 alleles, 11 are associated with the autosomal recessive form of GTPCH deficiency presenting with hyperphenylalaninemia (HPA) and neurotransmitter deficiency, 295 GCH1 variant alleles are detected in the dominant form of L-dopa-responsive dystonia (DRD or Segawa disease) while phenotypes of 18 alleles remained undefined. Autosomal recessive variants observed in the PTS (199 variants), PCBD1 (32 variants), and QDPR (141 variants) genes lead to HPA concomitant with central monoamine neurotransmitter deficiency, while SPR deficiency (104 variants) presents without hyperphenylalaninemia. The clinical impact of reported variants is essential for genetic counseling and important for development of precision medicine.

摘要

四氢生物蝶呤(BH)缺乏症是由参与从头生物合成辅助因子的三个基因中的遗传变异引起的,即 GTP 环化水解酶 I(GTPCH/GCH1)、6-丙酮酰四氢蝶呤合酶(PTPS/PTS)、蝶呤还原酶(SR/SPR),以及参与辅助因子循环的两个基因,即羟胺-4α-脱水酶(PCD/PCBD1)和二氢喋呤还原酶(DHPR/QDPR)。BH 代谢功能障碍导致辅助因子水平降低,可能导致全身高苯丙氨酸血症和/或由于中枢神经系统中单胺神经递质的继发性缺乏而导致的神经后遗症。在儿童神经递质障碍 PNDdb 数据库中,已有 1100 多名 BH 缺乏症患者和 800 种不同的等位基因变异分布在各个基因中。在这里,我们提供了这些变异的分子遗传分析和结构考虑的最新信息,包括基因型的临床过程。在总共 324 个等位基因中,有 11 个与常染色体隐性 GTPCH 缺乏症相关,表现为高苯丙氨酸血症(HPA)和神经递质缺乏症,295 个 GCH1 变体等位基因在显性形式的 L-多巴反应性肌张力障碍(DRD 或 Segawa 病)中检测到,而 18 个等位基因的表型仍未定义。在 PTS(199 个变异体)、PCBD1(32 个变异体)和 QDPR(141 个变异体)基因中观察到的常染色体隐性变异导致 HPA 同时伴有中枢单胺神经递质缺乏,而 SPR 缺乏症(104 个变异体)则不伴有高苯丙氨酸血症。已报道的变异体的临床影响对于遗传咨询至关重要,对于精准医学的发展也很重要。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验