Artificial and Natural Intelligence Toulouse Institute, Université de Toulouse 3, Toulouse 31052, France
Centre National de la Recherche Scientifique, Centre de Recherche Cerveau et Cognition (CerCo), Toulouse 31052, France.
eNeuro. 2021 May 25;8(3). doi: 10.1523/ENEURO.0362-20.2021. Print 2021 May-Jun.
Numerous theories propose a key role for brain oscillations in visual perception. Most of these theories postulate that sensory information is encoded in specific oscillatory components (e.g., power or phase) of specific frequency bands. These theories are often tested with whole-brain recording methods of low spatial resolution (EEG or MEG), or depth recordings that provide a local, incomplete view of the brain. Opportunities to bridge the gap between local neural populations and whole-brain signals are rare. Here, using representational similarity analysis (RSA) in human participants we explore which MEG oscillatory components (power and phase, across various frequency bands) correspond to low or high-level visual object representations, using brain representations from fMRI, or layer-wise representations in seven recent deep neural networks (DNNs), as a template for low/high-level object representations. The results showed that around stimulus onset and offset, most transient oscillatory signals correlated with low-level brain patterns (V1). During stimulus presentation, sustained β (∼20 Hz) and γ (>60 Hz) power best correlated with V1, while oscillatory phase components correlated with IT representations. Surprisingly, this pattern of results did not always correspond to low-level or high-level DNN layer activity. In particular, sustained β band oscillatory power reflected high-level DNN layers, suggestive of a feed-back component. These results begin to bridge the gap between whole-brain oscillatory signals and object representations supported by local neuronal activations.
许多理论提出脑振荡在视觉感知中起关键作用。这些理论大多假定感觉信息以特定频率带的特定振荡分量(例如功率或相位)编码。这些理论通常使用低空间分辨率的全脑记录方法(EEG 或 MEG)或深度记录进行测试,这些方法提供了大脑局部、不完整的视图。弥合局部神经群体和全脑信号之间差距的机会很少。在这里,我们使用人类参与者的表示相似性分析 (RSA),探索了哪些 MEG 振荡分量(功率和相位,跨越各种频带)与低水平或高水平的视觉对象表示相对应,使用 fMRI 的大脑表示或最近的七个深度神经网络 (DNN) 的分层表示作为低/高水平对象表示的模板。结果表明,在刺激开始和结束时,大多数瞬态振荡信号与 V1 的低水平脑模式相关。在刺激呈现期间,持续的β(约 20 Hz)和γ(>60 Hz)功率与 V1 相关性最好,而振荡相位分量与 IT 表示相关。令人惊讶的是,这种结果模式并不总是与低水平或高水平 DNN 层活动相对应。特别是,持续的β波段振荡功率反映了高水平的 DNN 层,暗示了一个反馈成分。这些结果开始弥合全脑振荡信号与局部神经元激活支持的对象表示之间的差距。