Isogai Makoto, Seshimo Masataka, Houjou Hirohiko
Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo, 153-8505, Japan.
J Mol Model. 2021 Apr 27;27(5):140. doi: 10.1007/s00894-021-04743-y.
We applied the method of coarse-graining the intermolecular vibrations to molecular heterodimers assembled by double hydrogen bonding. This method is based on principal component analysis, by which the original atomic displacement vectors are projected onto a lower-dimensional space spanned by a basis set of translations, librations, and intramolecular vibrations of the constituent molecules. Compared with homodimers, the following points are particularly noted: (1) alignment of the constituent molecules in a non-symmetric atomic arrangement of the whole system and (2) the scheme of reordering the bases to construct an optimal coarse-grained space. We tested three schemes for reordering the intramolecular vibration vectors to determine that the best one is equivalent to size reduction based on the singular value decomposition. The coarse-graining analysis affords three parameters, Φ, Φ, and Φ, which are relevant to the mechanical nature of the molecular assembly. The Φ values account for the internal stiffness of molecules, while the Φ values are true stiffness constants of the intermolecular force and show a good correlation with the association energies of the dimers. The Φ values are the apparent intermolecular stiffness smaller than Φ, as a result of compensation for neglecting intramolecular vibrations. All these values are consistent with each other under the coupled oscillator model, showing that the present coarse-graining analysis is valid for heterodimers as well as homodimers.
我们将分子间振动粗粒化的方法应用于通过双氢键组装的分子异二聚体。该方法基于主成分分析,通过此分析,原始原子位移矢量被投影到由组成分子的平移、摆动和分子内振动的基组所跨越的低维空间中。与同二聚体相比,需特别注意以下几点:(1)组成分子在整个系统的非对称原子排列中的排列方式,以及(2)重新排列基以构建最佳粗粒化空间的方案。我们测试了三种重新排列分子内振动矢量的方案,以确定最佳方案等同于基于奇异值分解的尺寸缩减。粗粒化分析提供了三个参数,Φ、Φ 和 Φ,它们与分子组装的力学性质相关。Φ 值反映了分子的内部刚度,而 Φ 值是分子间力的真实刚度常数,并且与二聚体的缔合能显示出良好的相关性。由于忽略了分子内振动的补偿,Φ 值是小于 Φ 的表观分子间刚度。在耦合振子模型下,所有这些值相互一致,表明当前的粗粒化分析对异二聚体和同二聚体同样有效。