School of Psychology and Centre for Human Brain Health, University of Birmingham, UK.
Department of Psychology, Princeton University, USA.
Neuropsychologia. 2021 Jul 30;158:107867. doi: 10.1016/j.neuropsychologia.2021.107867. Epub 2021 Apr 24.
We propose a neural network model to explore how humans can learn and accurately retrieve temporal sequences, such as melodies, movies, or other dynamic content. We identify target memories by their neural oscillatory signatures, as shown in recent human episodic memory paradigms. Our model comprises three plausible components for the binding of temporal content, where each component imposes unique limitations on the encoding and representation of that content. A cortical component actively represents sequences through the disruption of an intrinsically generated alpha rhythm, where a desynchronisation marks information-rich operations as the literature predicts. A binding component converts each event into a discrete index, enabling repetitions through a sparse encoding of events. A timing component - consisting of an oscillatory "ticking clock" made up of hierarchical synfire chains - discretely indexes a moment in time. By encoding the absolute timing between discretised events, we show how one can use cortical desynchronisations to dynamically detect unique temporal signatures as they are reactivated in the brain. We validate this model by simulating a series of events where sequences are uniquely identifiable by analysing phasic information, as several recent EEG/MEG studies have shown. As such, we show how one can encode and retrieve complete episodic memories where the quality of such memories is modulated by the following: alpha gate keepers to content representation; binding limitations that induce a blink in temporal perception; and nested oscillations that provide preferential learning phases in order to temporally sequence events.
我们提出了一个神经网络模型,以探索人类如何学习和准确检索时间序列,如旋律、电影或其他动态内容。我们通过最近的人类情景记忆范式中显示的神经振荡特征来识别目标记忆。我们的模型由三个可能的组件组成,用于绑定时间内容,每个组件对该内容的编码和表示施加独特的限制。皮质组件通过内在产生的 alpha 节律的中断主动表示序列,其中去同步化标志着信息丰富的操作,如文献所预测的那样。绑定组件将每个事件转换为离散索引,通过事件的稀疏编码实现重复。时间组件 - 由由层次 synfire 链组成的振荡“滴答时钟”组成 - 离散地索引时间点。通过对离散事件之间的绝对时间进行编码,我们展示了如何使用皮质去同步化来动态检测大脑中重新激活的独特时间特征。我们通过模拟一系列事件来验证该模型,这些事件通过分析阶段性信息可以唯一识别序列,正如最近的几项 EEG/MEG 研究所示。因此,我们展示了如何编码和检索完整的情景记忆,这些记忆的质量受到以下因素的调节:alpha 门控器对内容的表示;绑定限制,会导致时间感知出现闪烁;以及嵌套的振荡,为事件的时间排序提供优先学习阶段。