Suppr超能文献

长链非编码 RNA 作为缺血性脑卒中预后的生物标志物:荟萃分析和生物信息学分析方案。

Long noncoding RNA as a biomarker for the prognosis of ischemic stroke: A protocol for meta-analysis and bioinformatics analysis.

机构信息

Department of Rehabilitation.

Department of Neurology, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan Province, China.

出版信息

Medicine (Baltimore). 2021 Apr 30;100(17):e25596. doi: 10.1097/MD.0000000000025596.

Abstract

BACKGROUND

As the most common type of cerebrovascular disease, ischemic stroke is the disturbance of cerebrovascular circulation caused by various factors, with complex pathogenesis. At present, the molecular mechanism of ischemic stroke is still unclear, and there lacks early diagnostic markers. Therefore, there is an urgent need to find effective preventive measures, active diagnostic methods and rapid treatment measures. In recent years, related studies have displayed that long noncoding RNAs (lncRNAs) is related to the prognosis of ischemic stroke. However, the results are not supported by some evidence. Therefore, in this study, meta-analysis was used to analyze the relationship between lncRNAs and the prognosis of ischemic stroke. In addition, we carried out bioinformatics analysis to study the action mechanism and related pathways of lncRNAs in ischemic stroke.

METHODS

Literature search was operated on databases up to March 2021, including China National Knowledge Infrastructure, Chinese Biomedical literature Database, Chinese Scientific and Journal Database, Wan Fang database, Web of Science, PubMed, and EMBASE. The relationship between lncRNAs expression and survival outcome was estimated by hazard ratio (HR) and 95% confidence interval (CI). Meta-analysis was conducted on the Stata 16.0. Starbase v2.0 software predicts microRNAs (miRNAs) that interacts with lncRNAs. In addition, HMDD v2.0 database filters out miRNAs related to ischemic stroke. Furthermore, Consite transcription factor database was used to predict the transcription factors of each lncRNAs and miRNA. At the same time, the transcription factors related to ischemic stroke were screened out after intersection. miRwalk online software was applied to predict the target mRNA of each miRNA, and the common target genes were screened by consistent method. The molecular regulatory network map of lncRNAs in ischemic stroke was drawn. Based on the overlapping target genes, gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and protein-protein interaction (PPI) network analysis were carried out to explore the possible mechanism.

RESULTS

The results of this meta-analysis would be submitted to peer-reviewed journals for publication.

CONCLUSION

This study will provide evidence-based medical evidence for the relationship between lncRNA and the prognosis of ischemic stroke. What is more, bioinformatics analysis will provide ideas for the study of ischemic stroke mechanism.

ETHICS AND DISSEMINATION

The private information from individuals will not be published. This systematic review also should not damage participants' rights. Ethical approval is not available. The results may be published in a peer-reviewed journal or disseminated in relevant conferences.

OSF REGISTRATION NUMBER

DOI 10.17605/OSF.IO/QBZW6.

摘要

背景

缺血性脑卒中作为最常见的脑血管病,是由多种因素导致脑血管循环障碍的一种疾病,其发病机制复杂。目前,缺血性脑卒中的分子机制仍不明确,缺乏早期诊断标志物,因此,寻找有效的预防措施、积极的诊断方法和快速的治疗手段迫在眉睫。近年来,相关研究表明长链非编码 RNA(lncRNA)与缺血性脑卒中的预后相关,但部分证据并不支持这一结果。因此,本研究采用荟萃分析方法分析 lncRNA 与缺血性脑卒中预后的关系。此外,我们还进行了生物信息学分析,以研究 lncRNA 在缺血性脑卒中发病机制中的作用机制及相关通路。

方法

检索中国知网、中国生物医学文献数据库、中国科学引文数据库、万方数据库、Web of Science、PubMed、EMBASE 等数据库,检索时限截至 2021 年 3 月。采用风险比(HR)及其 95%置信区间(CI)评估 lncRNA 表达与生存结局的关系。采用 Stata 16.0 软件进行荟萃分析,Starbase v2.0 软件预测与 lncRNA 相互作用的 microRNAs(miRNAs),HMDD v2.0 数据库筛选与缺血性脑卒中相关的 miRNAs,Consite 转录因子数据库预测各 lncRNA 和 miRNA 的转录因子,取交集得到与缺血性脑卒中相关的转录因子。同时,miRwalk 在线软件预测各 miRNA 的靶基因,采用一致法筛选共同靶基因,绘制缺血性脑卒中 lncRNA 的分子调控网络图谱。基于重叠靶基因,进行基因本体(GO)、京都基因与基因组百科全书(KEGG)和蛋白质-蛋白质相互作用(PPI)网络分析,探讨可能的作用机制。

结果

本研究的荟萃分析结果将提交给同行评议期刊发表。

结论

本研究将为 lncRNA 与缺血性脑卒中预后的关系提供循证医学证据,生物信息学分析将为缺血性脑卒中发病机制的研究提供思路。

伦理与传播

本研究不会公开个人信息。本系统评价也不应损害参与者的权利。本研究无需伦理批准。研究结果可能发表在同行评议期刊上或在相关会议上传播。

OSF 注册号:DOI 10.17605/OSF.IO/QBZW6。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/913b/8084069/390259f3f149/medi-100-e25596-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验