Vlachogiannis Dimitrios M, Xu Yanyan, Jin Ling, González Marta C
Energy Technologies Area, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 USA.
Department of Civil and Environmental Engineering, University of California at Berkeley, Berkeley, CA 94720 USA.
Appl Netw Sci. 2021;6(1):32. doi: 10.1007/s41109-021-00373-8. Epub 2021 Apr 23.
Over the last decades, severe haze pollution constitutes a major source of far-reaching environmental and human health problems. The formation, accumulation and diffusion of pollution particles occurs under complex temporal scales and expands throughout a wide spatial coverage. Seeking to understand the transport patterns of haze pollutants in China, we review a proposed framework of time-evolving directed and weighted air quality correlation networks. In this work, we evaluate monitoring stations' time-series data from China and California, to test the sensitivity of the framework to region size, climate and pollution magnitude across multiple years (2014-2020). We learn that the use of hourly concentration data is needed to detect periodicities in the positive and negative correlations of the concentrations. In addition, we show that the standardization of the correlation function method is required to obtain networks with more meaningful links when evaluating the dispersion of a severe haze event at the North China Plain or a wildfire event in California during December 2017. Post COVID-19 outbreak in China, we observe a significant drop in the magnitude of the assigned weights, indicating the improved air quality and the slowed transport of due to the lockdown. To identify regions where pollution transport is persistent, we extend the framework, partitioning the dynamic networks and reducing the networks' complexity through node subsampling. The end result separates the temporal series of in set of regions that are similarly affected through the year.
在过去几十年中,严重的雾霾污染构成了深远的环境和人类健康问题的主要来源。污染颗粒的形成、积累和扩散在复杂的时间尺度下发生,并在广泛的空间范围内扩展。为了了解中国雾霾污染物的传输模式,我们回顾了一个提出的随时间演变的有向加权空气质量相关网络框架。在这项工作中,我们评估了来自中国和加利福尼亚的监测站的时间序列数据,以测试该框架对多年(2014 - 2020年)内区域规模、气候和污染程度的敏感性。我们了解到,需要使用每小时的浓度数据来检测浓度正负相关性中的周期性。此外,我们表明,在评估2017年12月中国华北平原的严重雾霾事件或加利福尼亚的野火事件的扩散时,需要对相关函数方法进行标准化,以获得具有更有意义链接的网络。在中国新冠疫情爆发后,我们观察到分配权重的大小显著下降,这表明由于封锁空气质量得到改善,污染物传输减缓。为了识别污染传输持续存在的区域,我们扩展了该框架,对动态网络进行划分,并通过节点二次抽样降低网络的复杂性。最终结果将污染物的时间序列分离到全年受到类似影响的区域集合中。