Suppr超能文献

质子辅助的钙钛矿氧化物重构:迈向更高的电催化活性

Proton-Assisted Reconstruction of Perovskite Oxides: Toward Improved Electrocatalytic Activity.

作者信息

Cao Xiaojuan, Yan Xiaoyu, Ke Le, Zhao Kai, Yan Ning

机构信息

School of Physics and Technology, Wuhan University, Wuhan 430072, China.

Suzhou Institute of Wuhan University, Suzhou 215123, China.

出版信息

ACS Appl Mater Interfaces. 2021 May 12;13(18):22009-22016. doi: 10.1021/acsami.1c03276. Epub 2021 Apr 28.

Abstract

Electrocatalysis is indispensable to various emerging energy conversion and storage devices such as fuel cells and water electrolyzers. Owing to their unique physicochemical properties, perovskite oxide materials are one of the most promising water oxidation (OER) catalysts solely comprising earth-abundant elements. Nonetheless, many perovskite oxide catalysts suffer from a number of inherent problems such as the A-site cation segregation on the surface, coarse particles due to agglomeration/sintering, and surface decomposition during catalytic reactions. Besides, the catalytic activity is often incomparable with those of the state-of-the-art catalysts. In this work, we developed a proton-assisted approach to mitigate these common challenges. The protonation via the interaction of oxygen vacancies and water molecules induced the formation of protonic defects and the lattice expansion of the perovskite, leading to the fracture of big particles to yield small nanoparticles. This hydration in an acidic solution also selectively removed the A-site cation segregates and generated a spinel/perovskite heterostructure on the surface. We verified this approach using three typical perovskite OER catalysts including BaSrCoFeO (BSCF), LaSrCoFeO (LSCF), and LaSrMnO (LSM). The processed catalysts showed much improved activity while maintaining their excellent stability, surpassing most of today's OER catalysts based on complex oxides.

摘要

电催化对于各种新兴的能量转换和存储设备(如燃料电池和水电解槽)来说不可或缺。由于其独特的物理化学性质,钙钛矿氧化物材料是最有前景的水氧化(OER)催化剂之一,且仅由地球上储量丰富的元素组成。尽管如此,许多钙钛矿氧化物催化剂存在一些固有问题,如表面A位阳离子偏析、团聚/烧结导致颗粒粗大以及催化反应过程中的表面分解。此外,其催化活性往往无法与最先进的催化剂相媲美。在这项工作中,我们开发了一种质子辅助方法来应对这些常见挑战。通过氧空位与水分子的相互作用进行质子化,诱导了质子缺陷的形成和钙钛矿的晶格膨胀,导致大颗粒破碎生成小纳米颗粒。在酸性溶液中的这种水合作用还选择性地去除了A位阳离子偏析物,并在表面生成了尖晶石/钙钛矿异质结构。我们使用三种典型的钙钛矿OER催化剂(包括BaSrCoFeO(BSCF)、LaSrCoFeO(LSCF)和LaSrMnO(LSM))验证了这种方法。经过处理的催化剂在保持优异稳定性的同时,活性有了显著提高,超过了当今大多数基于复合氧化物的OER催化剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验