Luettmer-Strathmann Jutta, Adeli Koudehi Maral, Paudyal Nabina
Department of Physics, The University of Akron, Akron, Ohio 44325-4001, United States.
Department of Chemistry, The University of Akron, Akron, Ohio 44325-4001, United States.
J Phys Chem B. 2021 May 13;125(18):4726-4733. doi: 10.1021/acs.jpcb.1c02114. Epub 2021 Apr 28.
Motor proteins play an important role in many biological processes and have inspired the development of synthetic analogues. Molecular walkers, such as kinesin, dynein, and myosin V, fulfill a diverse set of functions including transporting cargo along tracks, pulling molecules through membranes, and deforming fibers. The complexity of molecular motors and their environment makes it difficult to model the detailed dynamics of molecular walkers over long time scales. In this work, we present a simple, three-dimensional model for a molecular walker on a bead-spring substrate. The walker is represented by five spherically symmetric particles that interact through common intermolecular potentials and can be simulated efficiently in Brownian dynamics simulations. The movement of motor protein walkers entails energy conversion through ATP hydrolysis while artificial motors typically rely on a local conversion of energy supplied through external fields. We model energy conversion through rate equations for mechanochemical states that couple positional and chemical degrees of freedom and determine the walker conformation through interaction potential parameters. We perform Brownian dynamics simulations for two scenarios: In the first, the model walker transports cargo by walking on a substrate whose ends are fixed. In the second, a tethered motor pulls a mobile substrate chain against a variable force. We measure relative displacements and determine the effects of cargo size and retarding force on the efficiency of the walker. We find that, while the efficiency of our model walker is less than for the biological system, our simulations reproduce trends observed in single-molecule experiments on kinesin. In addition, the model and simulation method presented here can be readily adapted to biological and synthetic systems with multiple walkers.
马达蛋白在许多生物过程中发挥着重要作用,并推动了合成类似物的发展。分子行走器,如驱动蛋白、动力蛋白和肌球蛋白V,具有多种功能,包括沿着轨道运输货物、将分子拉过膜以及使纤维变形。分子马达及其环境的复杂性使得难以在长时间尺度上对分子行走器的详细动力学进行建模。在这项工作中,我们提出了一个简单的三维模型,用于模拟珠子弹簧基质上的分子行走器。该行走器由五个球对称粒子表示,它们通过常见的分子间势相互作用,并且可以在布朗动力学模拟中高效地进行模拟。马达蛋白行走器的运动需要通过ATP水解进行能量转换,而人工马达通常依赖于通过外部场提供的能量的局部转换。我们通过耦合位置和化学自由度的机械化学状态的速率方程对能量转换进行建模,并通过相互作用势参数确定行走器的构象。我们针对两种情况进行了布朗动力学模拟:第一种情况是,模型行走器在两端固定的基质上行走来运输货物。第二种情况是,一个系留马达在可变力的作用下拉动一条可移动的基质链。我们测量相对位移,并确定货物大小和阻力对行走器效率的影响。我们发现,虽然我们的模型行走器的效率低于生物系统,但我们的模拟重现了在驱动蛋白单分子实验中观察到的趋势。此外,这里提出的模型和模拟方法可以很容易地应用于具有多个行走器的生物和合成系统。