Suppr超能文献

基于采样控制的马尔可夫跳变布尔控制网络的稳定性分析。

Stabilization of Markovian Jump Boolean Control Networks via Sampled-Data Control.

出版信息

IEEE Trans Cybern. 2022 Oct;52(10):10290-10301. doi: 10.1109/TCYB.2021.3069750. Epub 2022 Sep 19.

Abstract

In this article, we study the finite-time stabilization and the asymptotic stabilization with probability one of Markovian jump Boolean control networks (MJBCNs) by sampled-data state feedback controls (SDSFCs). Based on the semi-tensor product (STP), we introduce an augmented variable multiplied by the vector form of the switching signal and the state of MJBCN. We find that under SDSFC, the sequence of the states of the augmented variable at sampling instants satisfies the Markov property. Based on the convergences of the switching signal and the augmented variable, we obtain the sufficient and necessary criteria for the finite-time stabilization and the asymptotic stabilization of MJBCNs by SDSFCs, respectively. Moreover, for the two kinds of stabilization, the feedback matrices of SDSFCs are constructed, respectively. Finally, the obtained results are applied to an apoptosis network and a model of the lactose operon in the Escherichia Coli.

摘要

在本文中,我们通过采样数据状态反馈控制(SDSFC)研究马尔可夫跳变布尔控制网络(MJBCN)的有限时间稳定和概率一渐近稳定。基于张量积(STP),我们引入了一个增广变量,该变量乘以切换信号和 MJBCN 状态的向量形式。我们发现,在 SDSFC 下,在采样时刻增广变量的状态序列满足马尔可夫性质。基于切换信号和增广变量的收敛性,我们分别获得了 SDSFC 对 MJBCN 的有限时间稳定和渐近稳定的充分必要条件。此外,对于这两种稳定,分别构建了 SDSFC 的反馈矩阵。最后,将所得到的结果应用于细胞凋亡网络和大肠杆菌乳糖操纵子的模型。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验