Suppr超能文献

Python 包 abstcal:一个用于计算 Timeline Followback 数据戒断的开源工具。

Python Package abstcal: An Open-Source Tool for Calculating Abstinence From Timeline Followback Data.

机构信息

Department of Behavioral Science, The University of Texas MD Anderson Cancer Center, Houston, TX.

出版信息

Nicotine Tob Res. 2022 Jan 1;24(1):146-148. doi: 10.1093/ntr/ntab083.

Abstract

INTRODUCTION

In smoking cessation clinical trials, timeline followback (TLFB) interviews are widely used to track daily cigarette consumption. However, there are no standard tools for calculating abstinence based on TLFB data. Individual research groups have to develop their own calculation tools, which is not only time- and resource-consuming but might also lead to variability in the data processing and calculation procedures.

AIMS AND METHODS

To address these issues, we developed a novel open-source Python package named abstcal to calculate abstinence using TLFB data. This package provides data verification, duplicate and outlier detection, missing-data imputation, integration of biochemical verification data, and calculation of a variety of definitions of abstinence, including continuous, point-prevalence, and prolonged abstinence.

RESULTS

We verified the accuracy of the calculator using data derived from a clinical smoking cessation study. To improve the package's accessibility, we have made it available as a free web app.

CONCLUSIONS

The abstcal package is a reliable abstinence calculator with open-source access, providing a shared validated online tool to the addiction research field. We expect that this open-source abstinence calculation tool will improve the rigor and reproducibility of smoking and addiction research by standardizing TLFB-based abstinence calculation.

IMPLICATIONS

Abstinence calculation is an essential task in any smoking intervention study. However, there have not been standard open-source tools available to the researchers. This commentary describes a Python-based package called abstcal that can calculate abstinence from TLFB data, a common methodology to collect smoking consumption data in research settings. The package supports the calculation of point-prevalence, prolonged, and continuous abstinence. Importantly, the package has a web app interface that allows researchers to use the tool without any coding experience. This tool will facilitate smoking research by providing a standardized and easy-to-use abstinence calculation tool.

摘要

简介

在戒烟临床试验中,时间线回溯(TLFB)访谈被广泛用于追踪每日吸烟量。然而,目前尚无基于 TLFB 数据计算戒烟率的标准工具。各个研究小组不得不开发自己的计算工具,这不仅耗时耗力,而且可能导致数据处理和计算过程的不一致。

目的和方法

为了解决这些问题,我们开发了一个名为 abstcal 的新的开源 Python 包,用于使用 TLFB 数据计算戒烟率。该包提供数据验证、重复和异常值检测、缺失数据插补、生物化学验证数据集成以及多种戒烟定义的计算,包括连续、点患病率和长期戒烟。

结果

我们使用来自一项临床戒烟研究的数据验证了计算器的准确性。为了提高该包的可访问性,我们将其作为免费的网络应用程序提供。

结论

abstcal 包是一个可靠的戒烟计算器,具有开源访问权限,为成瘾研究领域提供了一个共享的经过验证的在线工具。我们期望这个开源的戒烟计算工具能够通过标准化基于 TLFB 的戒烟计算来提高吸烟和成瘾研究的严谨性和可重复性。

意义

戒烟计算是任何吸烟干预研究中必不可少的任务。然而,研究人员并没有标准的开源工具。这篇评论描述了一个名为 abstcal 的基于 Python 的包,它可以从 TLFB 数据中计算戒烟率,这是一种在研究环境中收集吸烟量数据的常见方法。该包支持点患病率、长期和连续戒烟率的计算。重要的是,该包具有网络应用程序界面,允许研究人员在无需任何编码经验的情况下使用该工具。这个工具将通过提供一个标准化和易于使用的戒烟计算工具来促进吸烟研究。

相似文献

2
Validity of the timeline followback among treatment-seeking smokers in Germany.德国寻求治疗的吸烟者中时间回溯法的有效性。
Drug Alcohol Depend. 2009 Nov 1;105(1-2):164-7. doi: 10.1016/j.drugalcdep.2009.05.023. Epub 2009 Jul 14.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验