Suppr超能文献

基于计算机断层扫描的肺实质分割研究进展

[Research progress in lung parenchyma segmentation based on computed tomography].

作者信息

Xiao Hanguang, Ran Zhiqiang, Huang Jinfeng, Ren Huijiao, Liu Chang, Zhang Banglin, Zhang Bolong, Dang Jun

机构信息

Department of Intelligent Science, School of Artificial Intelligence, Chongqing University of Technology, Chongqing 401135, P.R.China.

Department of Radiotherapy, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, P.R.China.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Apr 25;38(2):379-386. doi: 10.7507/1001-5515.202008032.

Abstract

Lung diseases such as lung cancer and COVID-19 seriously endanger human health and life safety, so early screening and diagnosis are particularly important. computed tomography (CT) technology is one of the important ways to screen lung diseases, among which lung parenchyma segmentation based on CT images is the key step in screening lung diseases, and high-quality lung parenchyma segmentation can effectively improve the level of early diagnosis and treatment of lung diseases. Automatic, fast and accurate segmentation of lung parenchyma based on CT images can effectively compensate for the shortcomings of low efficiency and strong subjectivity of manual segmentation, and has become one of the research hotspots in this field. In this paper, the research progress in lung parenchyma segmentation is reviewed based on the related literatures published at domestic and abroad in recent years. The traditional machine learning methods and deep learning methods are compared and analyzed, and the research progress of improving the network structure of deep learning model is emphatically introduced. Some unsolved problems in lung parenchyma segmentation were discussed, and the development prospect was prospected, providing reference for researchers in related fields.

摘要

肺癌和新冠肺炎等肺部疾病严重威胁人类健康和生命安全,因此早期筛查和诊断尤为重要。计算机断层扫描(CT)技术是筛查肺部疾病的重要手段之一,其中基于CT图像的肺实质分割是肺部疾病筛查的关键步骤,高质量的肺实质分割能够有效提高肺部疾病的早期诊断和治疗水平。基于CT图像自动、快速、准确地分割肺实质能够有效弥补手工分割效率低、主观性强的缺点,已成为该领域的研究热点之一。本文基于近年来国内外发表的相关文献,综述了肺实质分割的研究进展。对传统机器学习方法和深度学习方法进行了比较分析,重点介绍了改进深度学习模型网络结构的研究进展。讨论了肺实质分割中一些尚未解决的问题,并对发展前景进行了展望,为相关领域的研究人员提供参考。

相似文献

1
[Research progress in lung parenchyma segmentation based on computed tomography].基于计算机断层扫描的肺实质分割研究进展
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2021 Apr 25;38(2):379-386. doi: 10.7507/1001-5515.202008032.
6
LDANet: Automatic lung parenchyma segmentation from CT images.LDANet:从CT图像中自动分割肺实质。
Comput Biol Med. 2023 Mar;155:106659. doi: 10.1016/j.compbiomed.2023.106659. Epub 2023 Feb 10.
10
COVID-19 CT Scan Lung Segmentation: How We Do It.COVID-19 CT 扫描肺部分割:我们的做法。
J Digit Imaging. 2022 Jun;35(3):424-431. doi: 10.1007/s10278-022-00593-z. Epub 2022 Jan 28.

本文引用的文献

1
LGAN: Lung segmentation in CT scans using generative adversarial network.LGAN:使用生成对抗网络进行 CT 扫描中的肺部分割。
Comput Med Imaging Graph. 2021 Jan;87:101817. doi: 10.1016/j.compmedimag.2020.101817. Epub 2020 Nov 16.
8
DENSE-INception U-net for medical image segmentation.基于密集卷积 Inception 的 U-Net 网络在医学图像分割中的应用
Comput Methods Programs Biomed. 2020 Aug;192:105395. doi: 10.1016/j.cmpb.2020.105395. Epub 2020 Feb 15.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验