Suppr超能文献

患者报告结局可预测接受阿贝西利治疗的晚期乳腺癌患者的无进展生存期。

Patient-Reported Outcomes Predict Progression-Free Survival of Patients with Advanced Breast Cancer Treated with Abemaciclib.

机构信息

College of Medicine and Public Health, Flinders University, Adelaide, Australia.

Department of Medical Oncology, Flinders Centre for Innovation in Cancer, Flinders Medical Centre, Adelaide, Australia.

出版信息

Oncologist. 2021 Jul;26(7):562-568. doi: 10.1002/onco.13806. Epub 2021 May 11.

Abstract

BACKGROUND

Abemaciclib is a CDK4/6 inhibitor used to treat hormone receptor-positive, human epidermal growth factor receptor 2-negative advanced breast cancer. The prognostic value of patient-reported outcomes (PROs) has been minimally explored for treatment outcomes with CDK4/6 inhibitors. The performance of PROs compared with Eastern Cooperative Oncology Group performance status (ECOG-PS) is unknown.

MATERIALS AND METHODS

This study pooled data from single-arm trial, MONARCH 1, and randomized trials, MONARCH 2 and 3. In total, 900 patients initiated abemaciclib and 384 comparator therapy. Pretreatment PRO association with progression-free survival (PFS) was modeled using Cox proportional hazards regression. Prediction performance was assessed via the C-statistic (c). PROs were recorded via the European Organisation for Research and Treatment of Cancer QLQ-C30.

RESULTS

Patient-reported physical function, pain, role function, fatigue, and appetite loss were associated with PFS on univariable and adjusted analysis (p < .05). Physical function (c = 0.55) was most predictive, superior to ECOG-PS (c = 0.54), with multivariable analysis indicating both provide independent information (p < .02). In the pooled randomized arms of MONARCH 2 and 3, the PFS treatment benefit (hazard ratio [95% confidence interval]) of abemaciclib (vs. comparators) was 0.75 (0.57-1.0) for low physical function, compared with 0.48 (0.40-0.59) for intermediate/high (p[interaction] = .01).

CONCLUSION

PROs were identified as prognostic factors for PFS in patients initiating abemaciclib, with patient-reported physical function containing independent predictive information beyond ECOG-PS. Low physical function was associated with a decrease in the magnitude of PFS benefit from abemaciclib. PROs should be explored as prognostic, predictive, and stratification factors for clinical use and research trials of CDK4/6 inhibitors.

IMPLICATIONS FOR PRACTICE

For the first time, pretreatment patient-reported outcomes have been shown to be independent prognostic markers for progression-free survival (PFS) in patients diagnosed with hormone receptor-positive, human epidermal growth factor receptor 2-negative (HR+/HER2-) advanced breast cancer treated with abemaciclib. Importantly, patients with low physical function had a smaller PFS benefit from abemaciclib (vs. comparator) than patients with intermediate/high physical function. The present study demonstrates patient-reported outcomes as a simple, effective, inexpensive, and independent prognostic marker for patients with HR+/HER2- advanced breast cancer treated with abemaciclib.

摘要

背景

阿贝西利是一种 CDK4/6 抑制剂,用于治疗激素受体阳性、人表皮生长因子受体 2 阴性的晚期乳腺癌。患者报告的结局(PROs)在 CDK4/6 抑制剂治疗结局中的预测价值尚未得到充分探索。PROs 的表现与东部合作肿瘤学组表现状态(ECOG-PS)相比尚不清楚。

材料和方法

本研究汇总了单臂试验 MONARCH 1 和随机试验 MONARCH 2 和 3 的数据。共有 900 例患者开始接受阿贝西利治疗,384 例接受对照治疗。使用 Cox 比例风险回归模型对治疗前 PRO 与无进展生存期(PFS)的相关性进行建模。通过 C 统计量(c)评估预测性能。PRO 通过欧洲癌症研究与治疗组织 QLQ-C30 进行记录。

结果

在单变量和调整分析中,患者报告的身体功能、疼痛、角色功能、疲劳和食欲丧失与 PFS 相关(p<.05)。身体功能(c=0.55)是最具预测性的,优于 ECOG-PS(c=0.54),多变量分析表明两者提供了独立的信息(p<.02)。在 MONARCH 2 和 3 的随机联合臂中,与对照相比,阿贝西利(abemaciclib)的 PFS 治疗获益(风险比[95%置信区间])在低身体功能患者中为 0.75(0.57-1.0),而在中/高身体功能患者中为 0.48(0.40-0.59)(p[交互] =.01)。

结论

PROs 被确定为接受阿贝西利治疗的患者 PFS 的预后因素,患者报告的身体功能包含独立于 ECOG-PS 的预测信息。低身体功能与阿贝西利的 PFS 获益减少相关。PROs 应作为预测、预后和分层因素,用于 CDK4/6 抑制剂的临床应用和研究试验。

意义

首次表明,在接受阿贝西利治疗的激素受体阳性、人表皮生长因子受体 2 阴性(HR+/HER2-)晚期乳腺癌患者中,治疗前患者报告的结局是无进展生存期(PFS)的独立预后标志物。重要的是,与中/高身体功能患者相比,低身体功能患者从阿贝西利(vs. 对照)中获得的 PFS 获益较小。本研究表明,在接受阿贝西利治疗的 HR+/HER2-晚期乳腺癌患者中,患者报告的结局是一种简单、有效、廉价且独立的预后标志物。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验