Suppr超能文献

采用生活质量量表机器学习方法预测晚期非小细胞肺癌患者的免疫治疗反应。

Quality-of-life scale machine learning approach to predict immunotherapy response in patients with advanced non-small cell lung cancer.

作者信息

Shen Juanyan, Ma Junliang, Chen Shaolin, Jin Su-Han, Xu Junzhu, Li Qisha, Zhang Chi, Tian Xiaojing, Chen Xiaofei, Tan Fangya, Hecht Markus, Frey Benjamin, Gaipl Udo S, Ma Hu, Zhou Jian-Guo

机构信息

Department of Oncology, The Second Affiliated Hospital of Zunyi Medical University, Zunyi, China.

Department of Thoracic Surgery, The Third Affiliated Hospital of Zunyi Medical University, The First People's Hospital of Zunyi, Zunyi, Guizhou, China.

出版信息

Front Immunol. 2025 Jul 18;16:1600265. doi: 10.3389/fimmu.2025.1600265. eCollection 2025.

Abstract

BACKGROUND

Despite immune checkpoint inhibitors(ICIs) significantly improve clinical outcomes in patients with advanced non-small cell lung cancer (aNSCLC), disease progression is inevitable. A diverse patient-reported Quality-of-life(QoL) scales were used to predict outcomes for aNSCLC patients with atezolizumab using machine learning.

MATERIALS AND METHODS

This study analyzed the association between baseline QoL and clinical outcomes in aNSCLC patients with atezolizumab in 4 randomized clinical trials: the IMpower150 study (discovery cohort), the BIRCH, OAK and POPLAR study (validation cohorts). We identified quality of life subtypes (QoLS) by consensus clustering in the discovery cohort and predicted them in external validated cohorts.

RESULTS

We identified QoLS1 and QoLS2 via consensus clustering in the discovery cohort. Compared with QoLS1, QoLS2 was associated with significantly worse survival outcomes, including a shorter median overall survival (OS: 13.14 . 21.42 months, hazard ratio (HR) 2.07, 95% CI: 1.64 to 2.62; < 0.0001) and progression-free survival (PFS: 5.7 . 8.3 months, HR 1.69, 95% CI 1.42 to 2.04; < 0.0001). QoLS2 also was associated with lower clinical benefit rate (57% . 68%, = 0.0027). In external cohorts, QoLS2 was consistently associated with unfavorable OS ( < 0.0001). Notably, QoLS1 was a positive predictive biomarker for atezolizumab efficacy: patients in QoLS1 group derived greater survival benefit from ICIs versus chemotherapy (IMpower150, = 0.04; OAK+POPLAR, = 0.007), while patients in QoLS2 showed no significant treatment benefit.

CONCLUSIONS

Our study demonstrated the potential of integrative machine learning in effectively analyzing baseline QoL and predicting clinical outcomes in aNSCLC patients undergoing atezolizumab immunotherapy.

摘要

背景

尽管免疫检查点抑制剂(ICIs)显著改善了晚期非小细胞肺癌(aNSCLC)患者的临床结局,但疾病进展仍不可避免。本研究使用多种患者报告的生活质量(QoL)量表,通过机器学习预测接受阿特珠单抗治疗的aNSCLC患者的预后。

材料与方法

本研究在4项随机临床试验中分析了接受阿特珠单抗治疗的aNSCLC患者基线QoL与临床结局之间的关联:IMpower150研究(发现队列)、BIRCH、OAK和POPLAR研究(验证队列)。我们在发现队列中通过共识聚类确定了生活质量亚型(QoLS),并在外部验证队列中对其进行预测。

结果

我们在发现队列中通过共识聚类确定了QoLS1和QoLS2。与QoLS1相比,QoLS2与显著更差的生存结局相关,包括较短的中位总生存期(OS:13.14对21.42个月,风险比(HR)2.07,95%CI:1.64至2.62;P<0.0001)和无进展生存期(PFS:5.7对8.3个月,HR 1.69,95%CI 1.42至2.04;P<0.0001)。QoLS2也与较低的临床获益率相关(57%对68%,P = 0.0027)。在外部队列中,QoLS2始终与不良的总生存期相关(P<0.0001)。值得注意的是,QoLS1是阿特珠单抗疗效的阳性预测生物标志物:QoLS1组患者从ICIs治疗中获得的生存获益大于化疗(IMpower150研究,P = 0.04;OAK+POPLAR研究,P = 0.007),而QoLS2组患者未显示出显著的治疗获益。

结论

我们的研究证明了整合机器学习在有效分析基线QoL以及预测接受阿特珠单抗免疫治疗的aNSCLC患者临床结局方面的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8394/12314532/02452e6fc58c/fimmu-16-1600265-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验