Suppr超能文献

用于高效氧还原的钯与碳化钼的界面电子工程

Interfacial Electron Engineering of Palladium and Molybdenum Carbide for Highly Efficient Oxygen Reduction.

作者信息

Huang Liang, Zheng Xiliang, Gao Ge, Zhang He, Rong Kai, Chen Jinxing, Liu Yongqin, Zhu Xinyang, Wu Weiwei, Wang Ying, Wang Jin, Dong Shaojun

机构信息

State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, Jilin 130022, China.

University of Science and Technology of China, Hefei, Anhui 230026, China.

出版信息

J Am Chem Soc. 2021 May 12;143(18):6933-6941. doi: 10.1021/jacs.1c00656. Epub 2021 Apr 29.

Abstract

Interfacial electron engineering between noble metal and transition metal carbide is identified as a powerful strategy to improve the intrinsic activity of electrocatalytic oxygen reduction reaction (ORR). However, this short-range effect and the huge structural differences make it a significant challenge to obtain the desired electrocatalyst with atomically thin noble metal layers. Here, we demonstrated the combinatorial strategies to fabricate the heterostructure electrocatalyst of MoC-coupled Pd atomic layers (AL-Pd/MoC) by precise control of metal-organic framework confinement and covalent interaction. Both atomic characterizations and density functional theory calculations uncovered that the strong electron effect imposed on Pd atomic layers has intensively regulated the electronic structures and d-band center and then optimized the reaction kinetics. Remarkably, AL-Pd/MoC showed the highest ORR electrochemical activity and stability, which delivered a mass activity of 2.055 A mg at 0.9 V, which is 22.1, 36.1, and 80.3 times higher than Pt/C, Pd/C, and Pd nanoparticles, respectively. The present work has developed a novel approach for atomically noble metal catalysts and provides new insights into interfacial electron regulation.

摘要

贵金属与过渡金属碳化物之间的界面电子工程被认为是提高电催化氧还原反应(ORR)本征活性的有效策略。然而,这种短程效应和巨大的结构差异使得获得具有原子级薄贵金属层的理想电催化剂成为一项重大挑战。在此,我们展示了通过精确控制金属有机框架限制和共价相互作用来制备MoC耦合Pd原子层(AL-Pd/MoC)异质结构电催化剂的组合策略。原子表征和密度泛函理论计算均表明,施加在Pd原子层上的强电子效应强烈调节了电子结构和d带中心,进而优化了反应动力学。值得注意的是,AL-Pd/MoC表现出最高的ORR电化学活性和稳定性,在0.9 V时的质量活性为2.055 A mg,分别比Pt/C、Pd/C和Pd纳米颗粒高22.1倍、36.1倍和80.3倍。本工作开发了一种用于原子级贵金属催化剂的新方法,并为界面电子调控提供了新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验