文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Nano-Assemblies from Amphiphilic PnBA-b-POEGA Copolymers as Drug Nanocarriers.

作者信息

Chroni Angeliki, Mavromoustakos Thomas, Pispas Stergios

机构信息

Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, 48 Vassileos Constantinou Avenue, 11635 Athens, Greece.

Department of Chemistry, National and Kapodistrian University of Athens, Panepistimioupolis, 15771 Zografou, Greece.

出版信息

Polymers (Basel). 2021 Apr 5;13(7):1164. doi: 10.3390/polym13071164.


DOI:10.3390/polym13071164
PMID:33916421
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8038588/
Abstract

The focus of this study is the development of highly stable losartan potassium (LSR) polymeric nanocarriers. Two novel amphiphilic poly(n-butyl acrylate)-block-poly(oligo(ethylene glycol) methyl ether acrylate) (PnBA-b-POEGA) copolymers with different molecular weight (M) of PnBA are synthesized via reversible addition fragmentation chain transfer (RAFT) polymerization, followed by the encapsulation of LSR into both PnBA-b-POEGA micelles. Based on dynamic light scattering (DLS), the PnBA-b-POEGA and PnBA-b-POEGA (where the subscripts denote wt.% composition of the components) copolymers formed micelles of 10 nm and 24 nm in water. The LSR-loaded PnBA-b-POEGA nanocarriers presented increased size and greater mass nanostructures compared to empty micelles, implying the successful loading of LSR into the inner hydrophobic domains. A thorough NMR (nuclear magnetic resonance) characterization of the LSR-loaded PnBA-b-POEGA nanocarriers was conducted. Strong intermolecular interactions between the biphenyl ring and the butyl chain of LSR with the methylene signals of PnBA were evidenced by 2D-NOESY experiments. The highest hydrophobicity of the PnBA-b-POEGA micelles contributed to an efficient encapsulation of LSR into the micelles exhibiting a greater value of %EE compared to PnBA-b-POEGA + 50% LSR nanocarriers. Ultrasound release profiles of LSR signified that a great amount of the encapsulated LSR is strongly attached to both PnBA-b-POEGA and PnBA-b-POEGA micelles.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/1f31163cc67d/polymers-13-01164-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/931ed2d96c4a/polymers-13-01164-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/be356a690315/polymers-13-01164-sch002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/6ebbd5b0fe9f/polymers-13-01164-sch003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/04c9cbc039d8/polymers-13-01164-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/99810c13ac8d/polymers-13-01164-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/e232752c6d60/polymers-13-01164-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/dd105adedbeb/polymers-13-01164-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/b471d80d42cd/polymers-13-01164-sch004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/0e385b1311df/polymers-13-01164-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/f239815b197b/polymers-13-01164-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/4c92b8bf9834/polymers-13-01164-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/f7d77083b04d/polymers-13-01164-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/d578a8e1503a/polymers-13-01164-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/0225b81b0bf7/polymers-13-01164-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/535a9ef642f9/polymers-13-01164-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/fb7fbae22017/polymers-13-01164-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/be019d4cbc4e/polymers-13-01164-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/272772c87abe/polymers-13-01164-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/1e982bfe8919/polymers-13-01164-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/be5bc65ce5ae/polymers-13-01164-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/1f31163cc67d/polymers-13-01164-g017.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/931ed2d96c4a/polymers-13-01164-sch001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/be356a690315/polymers-13-01164-sch002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/6ebbd5b0fe9f/polymers-13-01164-sch003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/04c9cbc039d8/polymers-13-01164-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/99810c13ac8d/polymers-13-01164-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/e232752c6d60/polymers-13-01164-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/dd105adedbeb/polymers-13-01164-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/b471d80d42cd/polymers-13-01164-sch004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/0e385b1311df/polymers-13-01164-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/f239815b197b/polymers-13-01164-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/4c92b8bf9834/polymers-13-01164-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/f7d77083b04d/polymers-13-01164-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/d578a8e1503a/polymers-13-01164-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/0225b81b0bf7/polymers-13-01164-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/535a9ef642f9/polymers-13-01164-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/fb7fbae22017/polymers-13-01164-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/be019d4cbc4e/polymers-13-01164-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/272772c87abe/polymers-13-01164-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/1e982bfe8919/polymers-13-01164-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/be5bc65ce5ae/polymers-13-01164-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ed7a/8038588/1f31163cc67d/polymers-13-01164-g017.jpg

相似文献

[1]
Nano-Assemblies from Amphiphilic PnBA-b-POEGA Copolymers as Drug Nanocarriers.

Polymers (Basel). 2021-4-5

[2]
Curcumin-Loaded PnBA--POEGA Nanoformulations: A Study of Drug-Polymer Interactions and Release Behavior.

Int J Mol Sci. 2023-2-27

[3]
Biocompatible PEO-b-PCL Nanosized Micelles as Drug Carriers: Structure and Drug-Polymer Interactions.

Nanomaterials (Basel). 2020-9-18

[4]
Self-assembly of asymmetric poly(ethylene oxide)-block-poly(n-butyl acrylate) diblock copolymers in aqueous media to unexpected morphologies.

J Phys Chem B. 2009-4-2

[5]
Smart Poly(lactide)--poly(triethylene glycol methyl ether methacrylate) (PLA--PTEGMA) Block Copolymers: One-Pot Synthesis, Temperature Behavior, and Controlled Release of Paclitaxel.

Pharmaceutics. 2023-4-8

[6]
Comb-like amphiphilic copolymers bearing acetal-functionalized backbones with the ability of acid-triggered hydrophobic-to-hydrophilic transition as effective nanocarriers for intracellular release of curcumin.

Biomacromolecules. 2013-10-29

[7]
Non-ionic amphiphilic block copolymers by RAFT-polymerization and their self-organization.

Colloid Polym Sci. 2006

[8]
Drug-loaded and superparamagnetic iron oxide nanoparticle surface-embedded amphiphilic block copolymer micelles for integrated chemotherapeutic drug delivery and MR imaging.

Langmuir. 2011-11-11

[9]
pH-Driven Morphological Diversity in Poly[n-Butyl Acrylate-block-(2-(Dimethylamino)Ethyl Acrylate)] Amphiphilic Copolymer Solutions.

Macromol Rapid Commun. 2019-11-10

[10]
Folate-conjugated amphiphilic hyperbranched block copolymers based on Boltorn H40, poly(L-lactide) and poly(ethylene glycol) for tumor-targeted drug delivery.

Biomaterials. 2009-6

引用本文的文献

[1]
Exploring Hypertension: The Role of AT1 Receptors, Sartans, and Lipid Bilayers.

ACS Omega. 2024-11-1

[2]
Curcumin-Loaded PnBA--POEGA Nanoformulations: A Study of Drug-Polymer Interactions and Release Behavior.

Int J Mol Sci. 2023-2-27

[3]
Losartan Interactions with 2-Hydroxypropyl-β-CD.

Molecules. 2022-4-8

[4]
Polymeric Micro/Nanocarriers and Motors for Cargo Transport and Phototriggered Delivery.

Polymers (Basel). 2021-11-12

本文引用的文献

[1]
Biocompatible PEO-b-PCL Nanosized Micelles as Drug Carriers: Structure and Drug-Polymer Interactions.

Nanomaterials (Basel). 2020-9-18

[2]
Progress in Delivery of siRNA-Based Therapeutics Employing Nano-Vehicles for Treatment of Prostate Cancer.

Bioengineering (Basel). 2020-8-10

[3]
In vivo gene delivery mediated by non-viral vectors for cancer therapy.

J Control Release. 2020-9-10

[4]
Polymeric multifunctional nanomaterials for theranostics.

J Mater Chem B. 2015-9-14

[5]
pH-Driven Morphological Diversity in Poly[n-Butyl Acrylate-block-(2-(Dimethylamino)Ethyl Acrylate)] Amphiphilic Copolymer Solutions.

Macromol Rapid Commun. 2019-11-10

[6]
Nano based drug delivery systems: recent developments and future prospects.

J Nanobiotechnology. 2018-9-19

[7]
Block Copolymer Micelles in Nanomedicine Applications.

Chem Rev. 2018-6-29

[8]
Method for estimating protein binding capacity of polymeric systems.

Biochim Open. 2015-10-24

[9]
Regulating cancer associated fibroblasts with losartan-loaded injectable peptide hydrogel to potentiate chemotherapy in inhibiting growth and lung metastasis of triple negative breast cancer.

Biomaterials. 2017-8-11

[10]
Effect of Molecular Architecture on Cell Interactions and Stealth Properties of PEG.

Biomacromolecules. 2017-8-25

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索