文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Progress in Delivery of siRNA-Based Therapeutics Employing Nano-Vehicles for Treatment of Prostate Cancer.

作者信息

Ashrafizadeh Milad, Hushmandi Kiavash, Rahmani Moghadam Ebrahim, Zarrin Vahideh, Hosseinzadeh Kashani Sharareh, Bokaie Saied, Najafi Masoud, Tavakol Shima, Mohammadinejad Reza, Nabavi Noushin, Hsieh Chia-Ling, Zarepour Atefeh, Zare Ehsan Nazarzadeh, Zarrabi Ali, Makvandi Pooyan

机构信息

Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz 5166616471, Iran.

Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran 1419963114, Iran.

出版信息

Bioengineering (Basel). 2020 Aug 10;7(3):91. doi: 10.3390/bioengineering7030091.


DOI:10.3390/bioengineering7030091
PMID:32784981
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7552721/
Abstract

Prostate cancer (PCa) accounts for a high number of deaths in males with no available curative treatments. Patients with PCa are commonly diagnosed in advanced stages due to the lack of symptoms in the early stages. Recently, the research focus was directed toward gene editing in cancer therapy. Small interfering RNA (siRNA) intervention is considered as a powerful tool for gene silencing (knockdown), enabling the suppression of oncogene factors in cancer. This strategy is applied to the treatment of various cancers including PCa. The siRNA can inhibit proliferation and invasion of PCa cells and is able to promote the anti-tumor activity of chemotherapeutic agents. However, the off-target effects of siRNA therapy remarkably reduce its efficacy in PCa therapy. To date, various carriers were designed to improve the delivery of siRNA and, among them, nanoparticles are of importance. Nanoparticles enable the targeted delivery of siRNAs and enhance their potential in the downregulation of target genes of interest. Additionally, nanoparticles can provide a platform for the co-delivery of siRNAs and anti-tumor drugs, resulting in decreased growth and migration of PCa cells. The efficacy, specificity, and delivery of siRNAs are comprehensively discussed in this review to direct further studies toward using siRNAs and their nanoscale-delivery systems in PCa therapy and perhaps other cancer types.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/fba28eb84c39/bioengineering-07-00091-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/376bb638eccb/bioengineering-07-00091-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/88bf2d0ead99/bioengineering-07-00091-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/566716340941/bioengineering-07-00091-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/5cef3d6cebbe/bioengineering-07-00091-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/d3e9a82c0486/bioengineering-07-00091-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/5d6c50e73776/bioengineering-07-00091-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/cfed77d28890/bioengineering-07-00091-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/5332201a942e/bioengineering-07-00091-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/87126c3adc27/bioengineering-07-00091-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/25c13d7eee5c/bioengineering-07-00091-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/bc9cd8563eae/bioengineering-07-00091-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/05153ac2a68c/bioengineering-07-00091-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/eba065d302e3/bioengineering-07-00091-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/ae07e7bea2ca/bioengineering-07-00091-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/1b4fe0e8d97b/bioengineering-07-00091-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/fba28eb84c39/bioengineering-07-00091-g016.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/376bb638eccb/bioengineering-07-00091-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/88bf2d0ead99/bioengineering-07-00091-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/566716340941/bioengineering-07-00091-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/5cef3d6cebbe/bioengineering-07-00091-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/d3e9a82c0486/bioengineering-07-00091-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/5d6c50e73776/bioengineering-07-00091-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/cfed77d28890/bioengineering-07-00091-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/5332201a942e/bioengineering-07-00091-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/87126c3adc27/bioengineering-07-00091-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/25c13d7eee5c/bioengineering-07-00091-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/bc9cd8563eae/bioengineering-07-00091-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/05153ac2a68c/bioengineering-07-00091-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/eba065d302e3/bioengineering-07-00091-g013.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/ae07e7bea2ca/bioengineering-07-00091-g014.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/1b4fe0e8d97b/bioengineering-07-00091-g015.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3be/7552721/fba28eb84c39/bioengineering-07-00091-g016.jpg

相似文献

[1]
Progress in Delivery of siRNA-Based Therapeutics Employing Nano-Vehicles for Treatment of Prostate Cancer.

Bioengineering (Basel). 2020-8-10

[2]
Pre-Clinical and Clinical Applications of Small Interfering RNAs (siRNA) and Co-Delivery Systems for Pancreatic Cancer Therapy.

Cells. 2021-11-29

[3]
Chitosan layered gold nanorods as synergistic therapeutics for photothermal ablation and gene silencing in triple-negative breast cancer.

Acta Biomater. 2015-10

[4]
Biomedical application of chitosan-based nanoscale delivery systems: Potential usefulness in siRNA delivery for cancer therapy.

Carbohydr Polym. 2021-5-15

[5]
Nanoparticle-siRNA: A potential cancer therapy?

Crit Rev Oncol Hematol. 2016-2

[6]
Nanoparticles for targeted delivery of therapeutics and small interfering RNAs in hepatocellular carcinoma.

World J Gastroenterol. 2015-11-14

[7]
Reversing multidrug resistance in breast cancer cells by silencing ABC transporter genes with nanoparticle-facilitated delivery of target siRNAs.

Int J Nanomedicine. 2012-6-5

[8]
Delivery strategies and potential targets for siRNA in major cancer types.

Adv Drug Deliv Rev. 2016-9-1

[9]
Advances in siRNA delivery approaches in cancer therapy: challenges and opportunities.

Mol Biol Rep. 2023-11

[10]
Recent Advances in siRNA Delivery Systems for Prostate Cancer Therapy.

Curr Pharm Biotechnol. 2022

引用本文的文献

[1]
Metal Peroxide Nanoparticles for Modulating the Tumor Microenvironment: Current Status and Recent Prospects.

Cancers (Basel). 2024-10-24

[2]
DCAF13 promotes ovarian cancer progression by activating FRAS1-mediated FAK signaling pathway.

Cell Mol Life Sci. 2024-10-5

[3]
Current advance of nanotechnology in diagnosis and treatment for malignant tumors.

Signal Transduct Target Ther. 2024-8-12

[4]
Nanoliposomes as nonviral vectors in cancer gene therapy.

MedComm (2020). 2024-6-25

[5]
Androgen Signaling in Prostate Cancer: When a Friend Turns Foe.

Endocr Metab Immune Disord Drug Targets. 2025

[6]
A Review on Novel Applications of Nanotechnology in the Management of Prostate Cancer.

Curr Drug Deliv. 2024

[7]
Unlocking the potential of non-coding RNAs in cancer research and therapy.

Transl Oncol. 2023-9

[8]
New insights and options into the mechanisms and effects of combined targeted therapy and immunotherapy in prostate cancer.

Mol Ther Oncolytics. 2023-4-29

[9]
Chitosan-based nanoscale systems for doxorubicin delivery: Exploring biomedical application in cancer therapy.

Bioeng Transl Med. 2022-9-13

[10]
(Nano)platforms in bladder cancer therapy: Challenges and opportunities.

Bioeng Transl Med. 2022-6-17

本文引用的文献

[1]
Brusatol suppresses STAT3-driven metastasis by downregulating epithelial-mesenchymal transition in hepatocellular carcinoma.

J Adv Res. 2020-7-13

[2]
A comprehensive review of genetic alterations and molecular targeted therapies for the implementation of personalized medicine in acute myeloid leukemia.

J Mol Med (Berl). 2020-8

[3]
Mechanistic Involvement of Long Non-Coding RNAs in Oncotherapeutics Resistance in Triple-Negative Breast Cancer.

Cells. 2020-6-21

[4]
Mango ( L.): a magnificent plant with cancer preventive and anticancer therapeutic potential.

Crit Rev Food Sci Nutr. 2021

[5]
Autophagy-modulating phytochemicals in cancer therapeutics: Current evidences and future perspectives.

Semin Cancer Biol. 2022-5

[6]
Vitexin abrogates invasion and survival of hepatocellular carcinoma cells through targeting STAT3 signaling pathway.

Biochimie. 2020-8

[7]
Topical delivery of siRNA into skin using ionic liquids.

J Control Release. 2020-7-10

[8]
Multifunctional siRNA-Laden Hybrid Nanoplatform for Noninvasive PA/IR Dual-Modal Imaging-Guided Enhanced Photogenetherapy.

ACS Appl Mater Interfaces. 2020-5-20

[9]
Self-enforcing HMGB1/NF-κB/HIF-1α Feedback Loop Promotes Cisplatin Resistance in Hepatocellular Carcinoma Cells.

J Cancer. 2020-4-6

[10]
Targeting STAT3 signaling pathway in cancer by agents derived from Mother Nature.

Semin Cancer Biol. 2022-5

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索