Boom Boris A, Bertolini Alessandro, Hennes Eric, van den Brand Johannes F J
National Institute for Subatomic Physics, Science Park 105, 1098 XG Amsterdam, The Netherlands.
Faculty of Science and Engineering, Maastricht University, Minderbroedersberg 4-6, 6211 LK Maastricht, The Netherlands.
Sensors (Basel). 2021 Apr 6;21(7):2566. doi: 10.3390/s21072566.
We present a novel analysis of gas damping in capacitive MEMS transducers that is based on a simple analytical model, assisted by Monte-Carlo simulations performed in Molflow+ to obtain an estimate for the geometry dependent gas diffusion time. This combination provides results with minimal computational expense and through freely available software, as well as insight into how the gas damping depends on the transducer geometry in the molecular flow regime. The results can be used to predict damping for arbitrary gas mixtures. The analysis was verified by experimental results for both air and helium atmospheres and matches these data to within 15% over a wide range of pressures.
我们提出了一种对电容式微机电系统(MEMS)换能器中气体阻尼的新颖分析方法,该方法基于一个简单的分析模型,并借助在Molflow+中进行的蒙特卡洛模拟,以获得与几何形状相关的气体扩散时间的估计值。这种结合以最小的计算成本并通过免费软件提供了结果,同时还深入了解了在分子流态下气体阻尼如何依赖于换能器的几何形状。这些结果可用于预测任意气体混合物的阻尼。该分析通过在空气和氦气环境中的实验结果得到了验证,并且在很宽的压力范围内与这些数据的匹配误差在15%以内。