Tesloianu Nicolae Dan, Dobreci Lucian, Ghizdovat Vlad, Zala Andrei, Cotirlet Adrian Valentin, Gavrilut Alina, Agop Maricel, Vasincu Decebal, Nedelciuc Igor, Rusu Cristina Marcela, Costache Irina Iuliana
Cardiology Department, "Sf. Spiridon" University Hospital, 700111 Iasi, Romania.
Department of Physical and Occupational Therapy, "VasileAlecsandri" University of Bacau, 600115 Bacau, Romania.
Entropy (Basel). 2021 Apr 9;23(4):444. doi: 10.3390/e23040444.
By assimilating biological systems, both structural and functional, into multifractal objects, their behavior can be described in the framework of the scale relativity theory, in any of its forms (standard form in Nottale's sense and/or the form of the multifractal theory of motion). By operating in the context of the multifractal theory of motion, based on multifractalization through non-Markovian stochastic processes, the main results of Nottale's theory can be generalized (specific momentum conservation laws, both at differentiable and non-differentiable resolution scales, specific momentum conservation law associated with the differentiable-non-differentiable scale transition, etc.). In such a context, all results are explicated through analyzing biological processes, such as acute arterial occlusions as scale transitions. Thus, we show through a biophysical multifractal model that the blocking of the lumen of a healthy artery can happen as a result of the "stopping effect" associated with the differentiable-non-differentiable scale transition. We consider that blood entities move on continuous but non-differentiable (multifractal) curves. We determine the biophysical parameters that characterize the blood flow as a Bingham-type rheological fluid through a normal arterial structure assimilated with a horizontal "pipe" with circular symmetry. Our model has been validated based on experimental clinical data.
通过将生物系统(包括结构和功能)整合到多重分形对象中,可以在尺度相对论理论的框架内描述它们的行为,该理论的任何形式(诺塔莱意义上的标准形式和/或运动的多重分形理论形式)均可。通过在运动的多重分形理论的背景下进行操作,基于通过非马尔可夫随机过程的多重分形化,可以推广诺塔莱理论的主要结果(特定的动量守恒定律,在可微和不可微分辨率尺度上均成立,与可微 - 不可微尺度转变相关的特定动量守恒定律等)。在这种背景下,所有结果都通过分析生物过程来阐述,例如将急性动脉阻塞视为尺度转变。因此,我们通过一个生物物理多重分形模型表明,健康动脉管腔的阻塞可能是由于与可微 - 不可微尺度转变相关的“停止效应”导致的。我们认为血液实体在连续但不可微(多重分形)的曲线上移动。我们通过将正常动脉结构与具有圆形对称性的水平“管道”同化,确定了将血流表征为宾汉型流变流体的生物物理参数。我们的模型已根据实验临床数据得到验证。