Suppr超能文献

SEMPA 网络:一种具有挤压激励的改进路径聚合网络,用于场景文本检测。

SEMPANet: A Modified Path Aggregation Network with Squeeze-Excitation for Scene Text Detection.

机构信息

Guangdong Key Laboratory of Intelligent Information Processing and Shenzhen Key Laboratory of Media Security, Shenzhen 518060, China.

出版信息

Sensors (Basel). 2021 Apr 9;21(8):2657. doi: 10.3390/s21082657.

Abstract

Recently, various object detection frameworks have been applied to text detection tasks and have achieved good performance in the final detection. With the further expansion of text detection application scenarios, the research value of text detection topics has gradually increased. Text detection in natural scenes is more challenging for horizontal text based on a quadrilateral detection box and for curved text of any shape. Most networks have a good effect on the balancing of target samples in text detection, but it is challenging to deal with small targets and solve extremely unbalanced data. We continued to use PSENet to deal with such problems in this work. On the other hand, we studied the problem that most of the existing scene text detection methods use ResNet and FPN as the backbone of feature extraction, and improved the ResNet and FPN network parts of PSENet to make it more conducive to the combination of feature extraction in the early stage. A SEMPANet framework without an anchor and in one stage is proposed to implement a lightweight model, which is embodied in the training time of about 24 h. Finally, we selected the two most representative datasets for oriented text and curved text to conduct experiments. On ICDAR2015, the improved network's latest results further verify its effectiveness; it reached 1.01% in F-measure compared with PSENet-1s. On CTW1500, the improved network performed better than the original network on average.

摘要

最近,各种目标检测框架已被应用于文本检测任务,并在最终检测中取得了良好的性能。随着文本检测应用场景的进一步扩展,文本检测主题的研究价值逐渐增加。基于四边形检测框的水平文本和任意形状的弯曲文本的自然场景中的文本检测对网络提出了更高的要求。大多数网络在文本检测中的目标样本平衡方面效果较好,但处理小目标和解决极度不平衡的数据仍然具有挑战性。在这项工作中,我们继续使用 PSENet 来解决这些问题。另一方面,我们研究了大多数现有的场景文本检测方法使用 ResNet 和 FPN 作为特征提取骨干的问题,并改进了 PSENet 中的 ResNet 和 FPN 网络部分,使其更有利于早期特征提取的结合。提出了一种无锚点和单阶段的 SEMPANet 框架来实现轻量级模型,这体现在大约 24 小时的训练时间上。最后,我们选择了两个最具代表性的定向文本和弯曲文本数据集进行实验。在 ICDAR2015 上,改进后的网络的最新结果进一步验证了其有效性;与 PSENet-1s 相比,它在 F 测度上达到了 1.01%。在 CTW1500 上,改进后的网络的平均性能优于原始网络。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5c91/8069456/29957f32295e/sensors-21-02657-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验