Suppr超能文献

复合材料缺陷检测的稳健主成分热成像技术。

Robust Principal Component Thermography for Defect Detection in Composites.

机构信息

Computer Vision and Systems Laboratory (CVSL), Department of Electrical and Computer Engineering, Laval University, Quebec City, QC G1V 0A6, Canada.

Infrared Thermography Testing Systems, Visiooimage Inc., Quebec City, QC G1W 1A8, Canada.

出版信息

Sensors (Basel). 2021 Apr 10;21(8):2682. doi: 10.3390/s21082682.

Abstract

Pulsed Thermography (PT) data are usually affected by noise and as such most of the research effort in the last few years has been directed towards the development of advanced signal processing methods to improve defect detection. Among the numerous techniques that have been proposed, principal component thermography (PCT)-based on principal component analysis (PCA)-is one of the most effective in terms of defect contrast enhancement and data compression. However, it is well-known that PCA can be significantly affected in the presence of corrupted data (e.g., noise and outliers). Robust PCA (RPCA) has been recently proposed as an alternative statistical method that handles noisy data more properly by decomposing the input data into a low-rank matrix and a sparse matrix. We propose to process PT data by RPCA instead of PCA in order to improve defect detectability. The performance of the resulting approach, Robust Principal Component Thermography (RPCT)-based on RPCA, was evaluated with respect to PCT-based on PCA, using a CFRP sample containing artificially produced defects. We compared results quantitatively based on two metrics, Contrast-to-Noise Ratio (CNR), for defect detection capabilities, and the Jaccard similarity coefficient, for defect segmentation potential. CNR results were on average 40% higher for RPCT than for PCT, and the Jaccard index was slightly higher for RPCT (0.7395) than for PCT (0.7010). In terms of computational time, however, PCT was 11.5 times faster than RPCT. Further investigations are needed to assess RPCT performance on a wider range of materials and to optimize computational time.

摘要

脉冲热成像(PT)数据通常会受到噪声的影响,因此,在过去几年中,大多数研究工作都集中在开发先进的信号处理方法以提高缺陷检测能力上。在所提出的众多技术中,基于主成分分析(PCA)的主成分热成像(PCT)是增强缺陷对比度和数据压缩最有效的技术之一。然而,众所周知,PCA 在存在损坏数据(例如噪声和异常值)时会受到显著影响。最近提出了鲁棒主成分分析(RPCA)作为一种替代的统计方法,它通过将输入数据分解为低秩矩阵和稀疏矩阵,更适当地处理噪声数据。我们建议使用 RPCA 而不是 PCA 来处理 PT 数据,以提高缺陷的可检测性。使用包含人工产生缺陷的 CFRP 样本,针对基于 PCA 的 PCT,评估了基于 RPCA 的鲁棒主成分热成像(RPCT)的性能。我们基于两个度量标准对结果进行了定量比较,分别是对比度噪声比(CNR),用于评估缺陷检测能力,以及杰卡德相似系数,用于评估缺陷分割潜力。与 PCT 相比,RPCT 的 CNR 结果平均高出 40%,而 RPCT 的杰卡德指数(0.7395)略高于 PCT(0.7010)。然而,在计算时间方面,PCT 比 RPCT 快 11.5 倍。需要进一步研究来评估 RPCT 在更广泛的材料上的性能,并优化计算时间。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e583/8070624/d024dcae8e55/sensors-21-02682-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验