Suppr超能文献

用于水凝胶颗粒形成的羧甲基纤维素中的离子型凝胶前沿

Ionotropic Gelation Fronts in Sodium Carboxymethyl Cellulose for Hydrogel Particle Formation.

作者信息

Sharratt William N, Lopez Carlos G, Sarkis Miriam, Tyagi Gunjan, O'Connell Róisín, Rogers Sarah E, Cabral João T

机构信息

Department of Chemical Engineering, Imperial College London, London SW7 2AZ, UK.

Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, 52056 Aachen, Germany.

出版信息

Gels. 2021 Apr 12;7(2):44. doi: 10.3390/gels7020044.

Abstract

Hydrogel microparticles (HMPs) find numerous practical applications, ranging from drug delivery to tissue engineering. Designing HMPs from the molecular to macroscopic scales is required to exploit their full potential as functional materials. Here, we explore the gelation of sodium carboxymethyl cellulose (NaCMC), a model anionic polyelectrolyte, with Fe cations in water. Gelation front kinetics are first established using 1D microfluidic experiments, and effective diffusive coefficients are found to increase with Fe concentration and decrease with NaCMC concentrations. We use Fourier Transform Infrared Spectroscopy (FTIR) to elucidate the Fe-NaCMC gelation mechanism and small angle neutron scattering (SANS) to spatio-temporally resolve the solution-to-network structure during front propagation. We find that the polyelectrolyte chain cross-section remains largely unperturbed by gelation and identify three hierarchical structural features at larger length scales. Equipped with the understanding of gelation mechanism and kinetics, using microfluidics, we illustrate the fabrication of range of HMP particles with prescribed morphologies.

摘要

水凝胶微粒(HMPs)有众多实际应用,从药物递送领域到组织工程领域。要充分发挥其作为功能材料的潜力,需要从分子尺度到宏观尺度设计HMPs。在此,我们探索了羧甲基纤维素钠(NaCMC,一种典型的阴离子聚电解质)与水中的铁阳离子的凝胶化过程。首先通过一维微流体实验确定凝胶化前沿动力学,发现有效扩散系数随铁浓度增加而增大,随NaCMC浓度降低而减小。我们使用傅里叶变换红外光谱(FTIR)阐明铁 - NaCMC凝胶化机制,并利用小角中子散射(SANS)在时空上解析前沿传播过程中溶液到网络的结构。我们发现聚电解质链的横截面在凝胶化过程中基本未受干扰,并在更大长度尺度上识别出三个层次结构特征。基于对凝胶化机制和动力学的理解,我们利用微流体技术展示了具有规定形态的一系列HMP颗粒的制备过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0b3f/8167666/5527a7646411/gels-07-00044-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验