Suppr超能文献

基于覆盖的深度学习语言模型的文本子句提取。

Subsentence Extraction from Text Using Coverage-Based Deep Learning Language Models.

机构信息

CARES, Department of Electrical, Computer and Software Engineering, University of Auckland, Auckland 1142, New Zealand.

CSIRO Data61, Robotics and Autonomous Systems Group, Perception Group, Pullenvale 4069, Australia.

出版信息

Sensors (Basel). 2021 Apr 12;21(8):2712. doi: 10.3390/s21082712.

Abstract

Sentiment prediction remains a challenging and unresolved task in various research fields, including psychology, neuroscience, and computer science. This stems from its high degree of subjectivity and limited input sources that can effectively capture the actual sentiment. This can be even more challenging with only text-based input. Meanwhile, the rise of deep learning and an unprecedented large volume of data have paved the way for artificial intelligence to perform impressively accurate predictions or even human-level reasoning. Drawing inspiration from this, we propose a coverage-based sentiment and subsentence extraction system that estimates a span of input text and recursively feeds this information back to the networks. The predicted subsentence consists of auxiliary information expressing a sentiment. This is an important building block for enabling vivid and epic sentiment delivery (within the scope of this paper) and for other natural language processing tasks such as text summarisation and Q&A. Our approach outperforms the state-of-the-art approaches by a large margin in subsentence prediction (i.e., Average Jaccard scores from 0.72 to 0.89). For the evaluation, we designed rigorous experiments consisting of 24 ablation studies. Finally, our learned lessons are returned to the community by sharing software packages and a public dataset that can reproduce the results presented in this paper.

摘要

情感预测在包括心理学、神经科学和计算机科学在内的各个研究领域仍然是一项具有挑战性且尚未解决的任务。这是由于其高度的主观性和有限的输入源,这些输入源无法有效地捕捉到实际的情感。对于仅基于文本的输入,这甚至更加具有挑战性。与此同时,深度学习的兴起和前所未有的大量数据为人工智能提供了令人印象深刻的准确预测甚至人类水平的推理铺平了道路。受此启发,我们提出了一种基于覆盖范围的情感和子句提取系统,该系统估计输入文本的跨度,并将此信息递归地反馈给网络。预测的子句由表达情感的辅助信息组成。这是实现生动和史诗般情感表达(在本文范围内)以及其他自然语言处理任务(如文本摘要和问答)的重要构建块。我们的方法在子句预测方面明显优于最先进的方法(即,平均 Jaccard 分数从 0.72 到 0.89)。为了进行评估,我们设计了由 24 项消融研究组成的严格实验。最后,我们通过共享软件包和公共数据集将学到的经验教训回馈给社区,这些数据集可以重现本文中呈现的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9ec1/8068876/70374afe4c8d/sensors-21-02712-g001.jpg

相似文献

1
Subsentence Extraction from Text Using Coverage-Based Deep Learning Language Models.
Sensors (Basel). 2021 Apr 12;21(8):2712. doi: 10.3390/s21082712.
2
Comparing deep learning architectures for sentiment analysis on drug reviews.
J Biomed Inform. 2020 Oct;110:103539. doi: 10.1016/j.jbi.2020.103539. Epub 2020 Aug 17.
4
BMT-Net: Broad Multitask Transformer Network for Sentiment Analysis.
IEEE Trans Cybern. 2022 Jul;52(7):6232-6243. doi: 10.1109/TCYB.2021.3050508. Epub 2022 Jul 4.
5
Sentiment Classification for Financial Texts Based on Deep Learning.
Comput Intell Neurosci. 2021 Oct 11;2021:9524705. doi: 10.1155/2021/9524705. eCollection 2021.
6
Aspect-based sentiment analysis with graph convolution over syntactic dependencies.
Artif Intell Med. 2021 Sep;119:102138. doi: 10.1016/j.artmed.2021.102138. Epub 2021 Aug 9.
8
Extracting comprehensive clinical information for breast cancer using deep learning methods.
Int J Med Inform. 2019 Dec;132:103985. doi: 10.1016/j.ijmedinf.2019.103985. Epub 2019 Oct 2.
9
Improving span-based Aspect Sentiment Triplet Extraction with part-of-speech filtering and contrastive learning.
Neural Netw. 2024 Sep;177:106381. doi: 10.1016/j.neunet.2024.106381. Epub 2024 May 10.
10
[The analysis of CIRSmedical.de using Natural Language Processing].
Z Evid Fortbild Qual Gesundhwes. 2022 Apr;169:1-11. doi: 10.1016/j.zefq.2021.12.002. Epub 2022 Feb 17.

本文引用的文献

1
Long-Term Personalization of an In-Home Socially Assistive Robot for Children With Autism Spectrum Disorders.
Front Robot AI. 2019 Nov 6;6:110. doi: 10.3389/frobt.2019.00110. eCollection 2019.
2
Using a robot to personalise health education for children with diabetes type 1: a pilot study.
Patient Educ Couns. 2013 Aug;92(2):174-81. doi: 10.1016/j.pec.2013.04.012. Epub 2013 May 16.
3
[The concept of mood in psychology].
Encephale. 1993 Mar-Apr;19(2):117-22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验