Suppr超能文献

基于句法依存关系图卷积的面向方面情感分析。

Aspect-based sentiment analysis with graph convolution over syntactic dependencies.

机构信息

School of Computer Science & Informatics, Cardiff University, The Parade, Cardiff CF24 3AA, United Kingdom.

School of Computer Science & Informatics, Cardiff University, The Parade, Cardiff CF24 3AA, United Kingdom.

出版信息

Artif Intell Med. 2021 Sep;119:102138. doi: 10.1016/j.artmed.2021.102138. Epub 2021 Aug 9.

Abstract

Aspect-based sentiment analysis is a natural language processing task whose aim is to automatically classify the sentiment associated with a specific aspect of a written text. In this study, we propose a novel model for aspect-based sentiment analysis, which exploits the dependency parse tree of a sentence using graph convolution to classify the sentiment of a given aspect. To evaluate this model in the domain of health and well-being, where this task is biased toward negative sentiment, we used a corpus of drug reviews. Specific aspects were grounded in the Unified Medical Language System, a large repository of inter-related biomedical concepts and the corresponding terminology. Our experiments demonstrated that graph convolution approach outperforms standard deep learning architectures on the task of aspect-based sentiment analysis. Moreover, graph convolution over dependency parse trees (F-score of 0.8179) outperforms the same approach over a flat sequence representation of sentences (F-score of 0.7332). These results bring the performance of sentiment analysis in health and well-being in line with the state of the art in other domains.

摘要

基于方面的情感分析是一种自然语言处理任务,旨在自动对书面文本的特定方面相关的情感进行分类。在这项研究中,我们提出了一种新的基于方面的情感分析模型,该模型利用句子的依存解析树,通过图卷积对给定方面的情感进行分类。为了在健康和福利领域评估这个模型,这个任务偏向于负面情绪,我们使用了药物评论语料库。具体方面基于统一医学语言系统,这是一个相互关联的生物医学概念和相应术语的大型存储库。我们的实验表明,在基于方面的情感分析任务中,图卷积方法优于标准深度学习架构。此外,依存解析树的图卷积(F 分数为 0.8179)优于句子的平面序列表示的相同方法(F 分数为 0.7332)。这些结果使得健康和福利领域的情感分析性能与其他领域的最新水平保持一致。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验