Suppr超能文献

MET 外显子 14 跳跃:深度学习检测癌症驱动基因中遗传变异的案例研究。

MET Exon 14 Skipping: A Case Study for the Detection of Genetic Variants in Cancer Driver Genes by Deep Learning.

机构信息

Department of Molecular Biotechnology and Health Sciences, University of Torino, 10126 Torino, Italy.

Candiolo Cancer Institute-FPO, IRCCS, 10060 Candiolo, Italy.

出版信息

Int J Mol Sci. 2021 Apr 19;22(8):4217. doi: 10.3390/ijms22084217.

Abstract

BACKGROUND

Disruption of alternative splicing (AS) is frequently observed in cancer and might represent an important signature for tumor progression and therapy. Exon skipping (ES) represents one of the most frequent AS events, and in non-small cell lung cancer (NSCLC) MET exon 14 skipping was shown to be targetable.

METHODS

We constructed neural networks (NN/CNN) specifically designed to detect MET exon 14 skipping events using RNAseq data. Furthermore, for discovery purposes we also developed a sparsely connected autoencoder to identify uncharacterized MET isoforms.

RESULTS

The neural networks had a Met exon 14 skipping detection rate greater than 94% when tested on a manually curated set of 690 TCGA bronchus and lung samples. When globally applied to 2605 TCGA samples, we observed that the majority of false positives was characterized by a blurry coverage of exon 14, but interestingly they share a common coverage peak in the second intron and we speculate that this event could be the transcription signature of a LINE1 (Long Interspersed Nuclear Element 1)-MET (Mesenchymal Epithelial Transition receptor tyrosine kinase) fusion.

CONCLUSIONS

Taken together, our results indicate that neural networks can be an effective tool to provide a quick classification of pathological transcription events, and sparsely connected autoencoders could represent the basis for the development of an effective discovery tool.

摘要

背景

剪接(AS)的改变在癌症中经常观察到,可能代表肿瘤进展和治疗的重要特征。外显子跳跃(ES)是最常见的 AS 事件之一,在非小细胞肺癌(NSCLC)中,MET 外显子 14 跳跃被证明是可靶向的。

方法

我们构建了专门设计的神经网络(NN/CNN),使用 RNAseq 数据来检测 MET 外显子 14 跳跃事件。此外,为了发现目的,我们还开发了一个稀疏连接的自编码器来识别未表征的 MET 异构体。

结果

当在一组 690 个 TCGA 支气管和肺样本的手工整理集上进行测试时,神经网络对 MET 外显子 14 跳跃的检测率大于 94%。当全局应用于 2605 个 TCGA 样本时,我们观察到大多数假阳性特征是外显子 14 的模糊覆盖,但有趣的是,它们在第二个内含子中共享一个共同的覆盖峰,我们推测这个事件可能是 LINE1(长散布核元件 1)-MET(间充质上皮转化受体酪氨酸激酶)融合的转录特征。

结论

总的来说,我们的结果表明,神经网络可以成为提供病理转录事件快速分类的有效工具,稀疏连接的自编码器可能是开发有效发现工具的基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8164/8072630/ef5f0c8897b5/ijms-22-04217-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验